MEMBRANE TECHNOLOGY TREATING OILY WASTEWATER FOR REUSE

Jeff Peeters, P.Eng. ZENON Environmental Inc.

SAWEA 2005 Workshop Al-Khobar Holiday Inn Hotel, Saudi Arabia November 29, 2005

Presentation outline

- Why are refineries considering wastewater reuse?
- Conventional refinery wastewater treatment
- Why use membranes?
- Membrane basics
- Membrane process configurations:
 - Tertiary filtration
 - Membrane bioreactor (MBR)
- Case studies:
 - PEMEX Refinery, Mexico
 - Marathon Ashland Petroleum Marine Repair Terminal, USA
- Conclusions

Why are refineries considering wastewater reuse?

Regulatory

increasingly stringent effluent quality requirements

Supply

diminishing freshwater resources

Economic

Opportunity to save on cost of process water and wastewater treatment (chemical consumption, activated carbon, sludge handling)

Technology

state-of-the-art membrane treatment meets wastewater reuse quality requirements

Conventional refinery wastewater treatment

Conventional flowsheet for refinery wastewater treatment for discharge

Why use membranes?

- Replace clarifiers for solid/liquid separation
- Ensure effluent is free of suspended solids
- Ensure complete removal of biologically degradable COD and TOC, including improved removal of refractory organics
- Reduce the footprint required for wastewater treatment
- Provide sufficient treatment for direct feed to RO for reuse in the refinery process
- "Absolute barrier" not subject to process upsets

The filtration spectrum

Membrane module

Membrane cassette

Membrane process configurations

Tertiary filtration

Membrane bioreactor (MBR)

Tertiary filtration

- Readily integrated into an existing wastewater treatment process
- Can be applied to only a portion of the wastewater flow
- Generates a reject stream that must be properly managed

Tertiary filtration

- Readily integrated into an existing wastewater treatment process
- Can be applied to only a portion of the wastewater flow
- Generates a reject stream that must be properly managed

Membrane bioreactor (MBR)

- Optimized biological treatment process
 - Reduced reactor volumes
 - Improved removal of refractory organics (increased SRT)
- Integration of biological treatment and filtration
- Improved process resiliency

Case studies

PEMEX Refinery, Mexico

Marathon Ashland Petroleum Marine Repair Terminal, Kentucky

- Tertiary treatment of combined refinery effluent as pretreatment for RO
- Located in Minatitlan, Mexico at one of Mexico's largest refineries (173,200 bpd)
- Wastewater treatment for reuse in the refinery overall water recycle efficiency is 70%
- RO permeate reused for cooling tower makeup and low-pressure boiler feed
- Treatment capacity of 6.8 MGD
- Commissioned in November 2001
- Drivers process reliability, cost savings

UF membrane process trains in treatment building

UF membrane process trains

UF membrane process equipment

UF system performance data

	Secondary effluent to UF	Treated effluent, RO feed
BOD (mg/L)	50	< 5
TSS (mg/L)	200	< 1
Turbidity (NTU)	25	< 0.1
SDI (-)	N/A	< 3.0

Reverse Osmosis system performance data

	UF effluent, RO feed	RO permeate
??	??	??
??	??	??
??	??	??
??	??	??

- 3-1/2 years of operating experience
- Consistent effluent quality for RO pre-treatment
 - RO cleaning 2-3x per year
- Membrane recovery with cleaning following heavy free oil fouling event

Membranes recovered after cleaning

Membranes in FOG process upset condition

- MBR treatment of oily wastewater
- Located in Catlettsburg, Kentucky
- Treats wastewater from marine repair terminal (i.e.: oily wastewater from barge wash down)
- Treatment capacity of 50,000 gpd
- Severe variations in wastewater composition due to different crudes carried by barges
- Wastewater treated to reuse quality, however reuse infrastructure is not yet in-place
- Commissioned in July 2003

Membrane equipment building

Pre-treatment processes

Membrane equipment

	Raw wastewater	Treated effluent
BOD (mg/L)	775	< 5
COD (mg/L)	1,000	< 300
TSS (mg/L)	66	N/D
TFOG (mg/L)	165	N/D
BTEX (mg/L)	10	< 0.7

- 1-1/2 years of operating experience
- Membranes have not required cleaning to-date
- Membrane system able to handle severe variations in flow and wastewater composition
- > 95% removal of BTEX compounds
- Full compliance for discharge to POTW

Conclusions

Demands

exist for wastewater reuse in the petroleum industry

Immersed hollow fiber membranes fit the need

to treat refinery wastewater to the levels required for reuse

Immersed hollow fiber membranes are the state-of-the-art

in the treatment of oily wastewater for reuse

Full-scale membrane facilities treating oily wastewater exist

proving the technical feasibility of this technology