High Density Polyethylene Liners for Rehabilitation of Corroded Pipelines

Jeff Schell
General Manager
United Pipeline Middle East, Inc.
Introduction – HDPE Liners

- A cost effective and environmentally beneficial solution for protecting pipelines from internal corrosion and abrasion using high density polyethylene pipe.
- Applications include potable water, pressurized sanitary sewers, oil and gas pipelines, slurry and tailings pipelines.
- Basic and general knowledge of liner installation types will ensure successful project.
Why HDPE?

- Chemical Resistance
- Corrosion Resistance
- Abrasion Resistance
- Toughness
- Ductility
- Flexibility
- Relative low cost
HDPE Liner in a Steel Pipeline
Interactive vs. Structural Liners

- **Interactive Liners**
 - For use where host pipe is structurally sound
 - Leaky joints, failed coatings
 - To span holes and gaps

- **Structural Liners**
 - For use where host pipe is NOT structurally sound
 - Severe corrosion
 - External Corrosion
Tight Fit vs. Close Fit Liners

- **Tight Fit Liners**
 - Liner OD > Host ID
 - Constant hoop-compression
 - “Locked in” place

- **Close Fit Liners** (not “Slipliners”)
 - Liner OD slightly smaller than Host ID
 - Constant hoop-tension
 - Liner cycling possible
Pressure Ratings

- Pressure ratings for interactive liners are determined by host pipe
 - No limitation on the pressure achieved

- Pressure ratings for structural liners are determined by HDPE “dimension ratio”
 - Pressure rating limited to HDPE extrusion limitations or installation method limitations (Generally max. 10 bar)
Temperature Ratings

- For interactive liners the HDPE softens but protective barrier remains. Temperatures up to 92°C
- For structural liners the pressure rating must be reduced according to temperature. Generally not an issue for municipal applications
Hole and Gap Spanning

- Hole spanning is a function of pressure, hole diameter, and liner thickness.
- Example - Theory
- Example - Test: 10 inch pipeline at 69 bar. 25mm diameter hole – no liner movement and no leaking.

\[y = 4895.3x^{-1.1032} \]
Flow Improvements

- Despite slight reduction in diameter, interactive liners result in increased flow.

Flow Improvement in HDPE lined Systems

- "C" value of 150 for HDPE is assumed.
- Flow improvement is independent of host pipe diameter assuming constant head loss per unit length and constant HDPE liner DR of 41.
Liner Reduction Methods
Roller Reduction

- Diameter of HDPE is temporarily reduced (elastic deformation).
- For installation of tight fit liners
- Can be used for interactive or structural
- Timing is critical – liner is growing back to original OD
Folded Liner

- Can achieve significant cross section reduction
- For installation of close fit
- “Fuse and Fold” facilitates small worksite footprint
- Generally for interactive liners, but sometimes structural
- After installation banding is broken with water pressure.
End Terminations - Mechanical

- For interactive liners a mechanical coupling is used to terminate the end and seal the liner/host pipe annulus.

- For structural liners a mechanical coupling is connected to the HDPE and not the host pipe.
End Terminations – “Stubend”
Practical Considerations

- Liners best suited for relatively long straight sections of pipe
 - Less digging
 - Fewer installation sections
 - Large scope offsets tooling costs
- Liner cannot pass through fittings, tees, or taps
- Intelligence of pipeline condition
 - Previous repairs
 - Changes in wall thickness
Case Study – 12” Pressurized Sewer Main

- The Challenge
 - Affluent residential community, elementary school
 - Fluctuations between heavy rain and drought cause clay soils to shift
 - 30-year old 12” cast iron sanitary sewer main experiencing multiple repairs due to cracking
 - Over the past 30 years new pipelines, telephone lines, power cables, fiber optic cables installed above the sewer main
Case Study – 12” Pressurized Sewer Main

The Solution

- Fully structural liner required – host pipe was not expected to withstand operating pressure due to long longitudinal cracking
- Tight fit liner to maximize internal diameter and flow
- Rollerbox installation method best suited due to HDPE thickness and jobsite layout
Case Study – 12” Pressurized Sewer Main

- The Project
 - Summer break for school
 - Bypass required
 - No pre-installation video inspection available
 - Pre Fuse liner for quick installation
 - Excavate pits
 - Unknown repairs found!
Case Study – 12” Pressurized Sewer Main

- The Result
 - Extra pit excavation required to remove repair
 - Liner installed and pressure tested in 2 days
 - Tie-ins made and bypass removed. Restorations.
 - “Full replacement would have cost us 2 to 3 times as much and been much more disruptive to our residents”
Case Study – 48” Potable Water Main

- The Challenge
 - Madison Avenue, Manhattan New York
 - One of the most recognized areas for upscale fashion and finance
 - 150 year old 48” cast iron potable water main
 - Removed from service due to leaky joints
 - Impractical to dig in the streets
Case Study – 48” Potable Water Main

- The Solution
 - Host pipe structurally sound just needed to span leaky joints and stop future corrosion
 - Interactive liner installed by the folded method
 - To minimize public impact work at night only.
 - Access pits during week
 - Close 2 lanes for the weekend
Case Study – 48” Potable Water Main

- The Result
 - Logistics and coordination were carefully defined
 - Sections installed, end terminations fitted, liner reverted, pressure test, chlorination
 - Returned to service after being out of service for years
 - Social impact minimized, existing asset utilized instead of abandoned
Questions?

Thank you!

Jeff Schell
jschell@insituform.com
+968 994 71006