Humidification
Dehumidification (HDH): From Theory to Plant

Dr. M. A. Antar
Professor, ME Department, KFUPM
Water Arabia 2015
Introduction

The solar Still

The Idea:
- Simple
- Old Technology
- Convenient
- Easy to build
- Maintenance

Low Productivity
Low GOR
Energy Recovery

Sweet water
It uses separate components for each of the thermal processes,

This allows each component to be independently designed

Much greater flexibility in design of thermodynamic cycle for vaporizing water into air and subsequently condensing vapor
The advantage of HDH over a solar still is a significantly
- Higher GOR
- Smaller total area of solar collector for a given water demand.

More broadly, HDH systems are regarded as having an advantage over some other technologies, such as reverse osmosis,
- they involve relatively simple, inexpensive components and
- can operate over a wide range of raw water quality without the need for complex maintenance operations.
This makes HDH more suitable for deployment in the developing world, where capital investment and technical support may be limited.

- Flexibility with water intake

- The basic drawback of the HDH system is that the thermal energy requirements are still relatively high in comparison to other technologies.
How HDH system works?

- Humidifier
- Dehumidifier
- Solar Water Heater
- Packed bed
- Brine
- Pure water
- Seawater in
- Humidified Air
- Dehumidified Air
How HDH system works?

- Humidifier
- Packed bed
- Solar Air Heater
- Dehumidifier
- Brine
- Pure water
- Seawater in

Humidified Air
Best HDH system has GOR of 4.5
Less than the worst desalination system ...

Improvements in HDH system
Can HDH compete with RO and MED?

Cycle Components
- Seawater properties
- Humidifiers models
- Dehumidifiers models
- Solar Heater models
- Solar Heater design
- Solar Heater tests
- Thermal storage

HDH Cycle Analysis
- Energy analysis
- Exergy analysis
- Cycle configurations
- Cycle optimization
- New cycles (2 US patents)
HDH cycles may be classified according to whether air or water is heated.

According to whether the air or water circuit is open or closed loop.

A water heated, open-air closed-water cycle is shown in Fig. 1.

Air heated cycles with open loop water and air, closed-air and open-water loops, and closed-water with open-air loops are shown in Figs. 2, 3, and 4, respectively.
El-Hallaj et al. built a system having this idea.
Classification

Water heated system with open air and closed water loops
Air-heated cycle with both air and water streams open.
Air heated cycle with closed-air loop
Classification

Air heated cycle, closed water loop
1. Psychrometric Processes

Humidification process is very similar to that of a cooling tower.
Multi Stage System (Chafiq)

Fig. 1. $h-x$ diagram with stepwise heating/humidifying process.
The main idea is to utilize solar energy to heat air (about 80°C) and humidify it through passing it over a pool of seawater.

This process is done on multiple stages (humidifying, heating cycles).

Different types of solar collectors and different ideas of solar heating are
Then, humid air is dehumidified in a condenser cooled by the seawater to extract fresh water. The theoretical analysis will include detailed feasibility study that determines the optimum number of stages, solar air heaters types, configuration and surface area (and of course, number), dehumidifier surface area and type, and effective system parameters.
• Multiple stages for distillate water production
• See water is used for humidifying the air
• It is also used to dehumidify the air in the heat exchanger as a cooling medium
• An air blower draws the air through different stages
Multi stage Air heated cycle, closed water loop (1)
Classification-our Own 2 stage sys.

Multi stage Air heated cycle, closed water loop (2)
Existing HDH cycles are single pressure systems, with the disadvantage of operating both humidifier and dehumidifier at a very low humidity level or a high humidity level. This limits heat recovery.
Multi-extraction systems allow heat and mass exchanger balancing and minimize entropy generation Higher GOR
HDH with varied pressure

HDH with varied pressure and thermo-compression

Mostafa H Sharqawy, Prakash N. Govindan, John H. Lienhard, and Syed Zybair
Water separation under varied pressure. Patent pending, USSN 12/573,221.

US Patent
Comparison of Novel HDH Cycles

<table>
<thead>
<tr>
<th>Cycle</th>
<th>GOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-stage air heated cycle</td>
<td>0.85</td>
</tr>
<tr>
<td>Efficient air heated cycle</td>
<td>3.5</td>
</tr>
<tr>
<td>Best HDH cycle in market</td>
<td>3.6-4.5</td>
</tr>
<tr>
<td>Reduced pressure cycle (34 kPa)</td>
<td>4.5</td>
</tr>
<tr>
<td>Multi-extraction cycle</td>
<td>>4.5</td>
</tr>
<tr>
<td>Thermo-compression cycle</td>
<td>>5</td>
</tr>
<tr>
<td>Varied pressure cycle</td>
<td>25</td>
</tr>
<tr>
<td>Ideal (reversible) HDH cycle</td>
<td>120</td>
</tr>
</tbody>
</table>

Gradiant designed, built, and operates two 12,000 bpd plants in the Permian basin. Both treat produced and flowback waters.
Technology is based on a carrier gas extraction (CGE) process, which recirculates air through a humidifier and multistage bubble column dehumidifier in a closed loop. As saline feedwater enters the unit, it is preheated in the dehumidifier before being heated an additional 10-15°C (18-27°F) using a natural gas-fired boiler. Some of the feedwater is evaporated as it is sprayed over a packed bed and condensed as distillate in the dehumidifier. Meanwhile, the non-evaporated portion of the feed is removed as saturated brine and the now re-humidified air is then returned to the dehumidifier column to continue the process.
These plants include CGE systems that produce freshwater and SCE systems that produce different grades of reusable fluids to customer specifications.
What Next

- Solar Energy utilization (back to lab and pilot scale for further development)
- Working in uncontrolled environment – how to maneuver.
- Mobile system (Tests ongoing).
Thank you