TREATMENT OF MTBE CONTAMINATED WATER USING UV/CHLORINE ADVANCED OXIDATION PROCESS

By

A. Kedir, B. Tawabini, A. Shaibani, A. Bukhari

Feb. 19th, 2015

Water Arabia 2015
Le Meridien | Khobar, Saudi Arabia
Presentation Outline

1. Introduction
2. Research Objective
3. Methodology
4. Result and discussion
5. Conclusion
Introduction

Methyl-Tertiary Butyl Ether (MTBE)

<table>
<thead>
<tr>
<th>Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production</td>
<td>▪ 65% of the world MTBE production in volume by China, USA, Saudi Arabia, Netherlands and South Korea,</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Uses</td>
<td>▪ 90% used as gasoline additive to raise the oxygen content</td>
</tr>
<tr>
<td></td>
<td>▪ 11-15% by volume blended with gasoline</td>
</tr>
<tr>
<td>Physicochemical</td>
<td>▪ High solubility in water: 50,000 mg/L, 30 times more soluble than Benzene</td>
</tr>
<tr>
<td>properties</td>
<td>▪ Low Koc: difficult to be adsorbed</td>
</tr>
<tr>
<td></td>
<td>▪ Low Henry’s constant (0.02-0.05 at 25°C) – difficult to strip out</td>
</tr>
<tr>
<td></td>
<td>▪ Resistant to microbial decomposition in water</td>
</tr>
</tbody>
</table>

(UNEP, 2005; USEPA; ATSDR; Health Canada 2006; PME)
Introduction

Information on Methyl-Tertiary Butyl Ether (MTBE)

<table>
<thead>
<tr>
<th>Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental sources & fate</td>
<td>▪ Leakage from Underground Storage Tank, Spills during transport, & Industrial discharge; common groundwater contaminant in USA, Canada, & EU countries</td>
</tr>
<tr>
<td>Exposure pathways</td>
<td>▪ Ingestion, inhalation, absorption</td>
</tr>
<tr>
<td>Health effect</td>
<td>▪ Rising health concern, potential carcinogenic risk to human</td>
</tr>
<tr>
<td>Standard for water</td>
<td>▪ PME G.W: 20µg/L, USEPA : 20–40µg/L advisory level, WHO & Canadian GV: 15µg/L</td>
</tr>
</tbody>
</table>

(WHO, 2005; USEPA; ATSDR; Health Canada 2006; PME)
Different treatment methods used for MTBE removal

<table>
<thead>
<tr>
<th>MTBE Removal methods</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adsorption (GAC)</td>
<td>Low affinity to solids/spent adsorbent disposal</td>
</tr>
<tr>
<td>Air Stripping</td>
<td>Expensive, have higher operating costs & water to air contaminant transfer</td>
</tr>
<tr>
<td>Biodegradation</td>
<td>Less efficient, long treatment time, not well developed</td>
</tr>
<tr>
<td>Advanced oxidation processes</td>
<td>A promising technology that completely mineralize the contaminants into H₂O & CO₂</td>
</tr>
</tbody>
</table>

(Levchuk, Bhatnagar et al. 2014)
Different treatment methods used for MTBE removal

- **UV + O₃, H₂O₂, Fenton, TiO₂, Chlorine**
- **OH⁺ + MTBE**
- **TBF, TBA, Acetone**
- **CO₂+H₂O**

(Ray et al., 2006)

Hamid and Ali, 2004
• Chlorine uses and chemistry:
 – chlorine is used as disinf ectant for water and wastewater treatment

 \[\text{NaOCl} \rightarrow \text{Na}^+ + \text{OCl}^- \]

 \[\text{OCl}^- + \text{H}^+ \leftrightarrow \text{HOCl} \]

• Chlorine as Oxidant in AOP technology

 \[\text{HOCl} + \text{UV photons} \rightarrow \cdot \text{OH} + \text{Cl}\cdot \]

 \[\text{OCl}^- + \text{UV photons} \rightarrow \cdot \text{O}^- + \text{Cl}\cdot \]

 \[\text{O}^- + \text{H}_2\text{O} \rightarrow \cdot \text{OH} + \text{OH}^- \]

 (Jin et al. 2010)

 Dependence of the ratio HOCl/OCl\(^-\) on pH
 (Feng et al. 2007)
Different Advanced Oxidation Processes used to remove MTBE in water

<table>
<thead>
<tr>
<th>Methods</th>
<th>Scale of study</th>
<th>MTBE removal (%)</th>
<th>Treatment time</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fenton</td>
<td>Bench scale</td>
<td>99</td>
<td>120 min</td>
<td>Xu et al. 2004</td>
</tr>
<tr>
<td>UV/H2O2,</td>
<td>Bench scale</td>
<td>98</td>
<td>60 min</td>
<td>Hu et al. 2008</td>
</tr>
<tr>
<td>UV/ZnO/H2O2</td>
<td>Bench scale</td>
<td>100</td>
<td>75 min</td>
<td>Eslami & Nasseri, 2008</td>
</tr>
<tr>
<td>UV-vis/TiO2/O2</td>
<td>Bench scale</td>
<td>82</td>
<td>75 min</td>
<td>Eslami et al, 2009</td>
</tr>
<tr>
<td>UV/TiO2</td>
<td>Bench scale</td>
<td>80</td>
<td>60 min</td>
<td>Hu et al. 2008</td>
</tr>
<tr>
<td>UV/TiO2</td>
<td>Bench scale</td>
<td>>95</td>
<td>30 min</td>
<td>Tawabini et al. 2013</td>
</tr>
<tr>
<td>UVC/CNTs</td>
<td>Bench scale</td>
<td>70</td>
<td>30 min</td>
<td>Tawabini et al. 2013</td>
</tr>
<tr>
<td>UV/CNT-TiO2</td>
<td>Bench scale</td>
<td>>60</td>
<td>120 min</td>
<td>Tawabini et al. 2013</td>
</tr>
<tr>
<td>UV/H2O2</td>
<td>Bench scale</td>
<td>>95</td>
<td>20 min</td>
<td>Tawabini et al. 2013</td>
</tr>
<tr>
<td>UV/O3</td>
<td>Bench scale</td>
<td>70-80</td>
<td>30 min</td>
<td>Tawabini et al. 2013</td>
</tr>
<tr>
<td>UV/Chlorine</td>
<td>Bench scale</td>
<td>????</td>
<td>????</td>
<td>Not reported</td>
</tr>
</tbody>
</table>
UV/Cl₂ AOP Water Treatment

<table>
<thead>
<tr>
<th>Contaminant Type</th>
<th>Removal Efficiency</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methylene Blue (MB) and Cyclohexanoic Acid (CHA)</td>
<td>▪ 80-90%</td>
<td>Chan et al, 2012</td>
</tr>
<tr>
<td>Trichloroethylene (TCE)</td>
<td>▪ 2.3 times more efficient than UV/H₂O₂ at pH 5</td>
<td>Wang et al., 2012</td>
</tr>
</tbody>
</table>
| Model Emerging Contaminants: 17-a-Ethinylestradiol, Benzotriazole, Tolytriazole, | ▪ 85-100%
▪ 30-75% energy reduction
▪ 30-50% cost saving than UV/H₂O₂ | Sichel et al, 2011b |
| Desethylatrazine, Carbamazepine, Sulfamethoxazole, Diclofenac, Iopamidole | | |
| 2-methylisoborneol | ▪ 80-90% efficiency at pH 6 | Rosenfeldt et al., 2013 |
Research Motivation and Objectives

- High production and wide use of MTBE, growing Health concern, & regulated
- MTBE is the common ground water pollutants and expensive to treat
- There is need for investigating an alternative treatment technologies to remove MTBE in water
- No work has been reported on the removal of MTBE in water by UV/chlorine AOP

- The main objective of this study was to assess the efficiency of MTBE removal in water using UV/Chlorine AOP
Methodology

• Instruments used
 ➢ NORMAG Photo-reactor
 ➢ Thermo Scientific GC-MS
 ➢ Desktop pH meter
Methods....

![Experimental setup diagram](image)

- **Experimental setup**
 - Reactor /vessel
 - Housed with two types of UV:
 - a) LP UV: 6.5×10^{-3} W/cm2, 254 nm
 - b) MP UV: 5.3×10^{-2} W/cm2, 200-400 nm
 - UV power unit
 - Circulation pump (Hostaflon®)

- **Experiment procedure**
 1. Adjust pH of the water
 2. Spike MTBE (1ppm)
 3. 10min circulation to homogenize
 4. Treatment types (Chlorine alone, UV alone, UV/chlorine)
 5. Monitoring MTBE residual and byproducts after certain time interval
**Methods….

- **Sample analysis**
 - EPA Method 524.2 protocol was used for MTBE & byproducts analysis

- **Quality control**
 - Ultra pure Deionized Water
 - Instrument calibration ($R^2>0.99$)
 - Replicate experiment
 - Duplicate analysis

- **Data analysis and presentation**
 - MS Excel sheet 2010
 - Graphs, & tables
 - Electrical Energy per Order (EE_O)
Result and discussion
Effect of pH on the MTBE degradation with LP & MP UV/Cl₂

Figure 1. Effect of pH on MTBE degradation with LP UV/Cl₂

Figure 2. Effect of pH on MTBE degradation with MP UV/Cl₂
Effect of pH on the MTBE degradation with LP & MP UV/Cl₂

- After 30 min >99% MTBE removal observed regardless of pH
- LP UV is more efficient for both MTBE and its byproducts removal concurrently
- The MTBE degradation could be due to:
 - UV photolysis and/or
 - Oxidation by OH radical and free chlorine
- In UV/Cl₂, OH radical is a major reason for degradation due to higher quantum yield, and less radical scavenging effect by HOCl than H₂O₂ (Rosenfeldt et al., 2013)
- OH radical attack on O-C (71%) and methyl group (29%) (Baus & Brauch, 2007)
Effect of chlorine dose on the MTBE degradation with LP & MP UV/Cl₂

Figure 9a. Effect of Cl₂ doses on MTBE degradation with LP UV/Cl₂

Figure 10a. Effect of Cl₂ doses on MTBE degradation with MP UV/Cl₂
Effect of chlorine dose on the MTBE degradation with LP & MP UV/Cl₂

- At lower Cl₂ dose >99% MTBE remove was achieved for both UV lamps.
- The higher Cl₂ dose might have scavenging effect on the OH radical.
- Other studies reported:
 - 80-90% removal of Methylisobreneol (MIB) by UV/Cl₂ (Rosenfeldt et al., 2013).
 - >95% of MTBE removal by LP & MP UV/H₂O₂ after 20 min, 70-80% by LP&MP UV/O₃ in 30min (Tawabini 2014).
- The differences mainly due to the water quality differences, initial MTBE concentration and the OH radical yied.
MTBE removal in groundwater by UV/Cl$_2$ AOP

- **Optimization criteria:**
 - Higher MTBE removal efficiency
 - Lower concentrations of byproducts
 - Minimum chlorine dose
 - Short treatment time
 - Less electrical energy

- **Optimum condition obtained:**
 - LP UV with 10ppm Cl$_2$ at pH 5, 30 min

- **>99% MTBE removal** in GW was achieved and superior than other AOPs

![MTBE degradation in groundwater with LP UV/Cl$_2$](image)

![TBF concentration](image)

Figure 11a. MTBE degradation in groundwater with LP UV/Cl$_2$

Figure 11b. TBF concentration
Comparison of MTBE removal efficiency & EE$_O$ of UV/Cl$_2$ & other AOP

<table>
<thead>
<tr>
<th>AOP type</th>
<th>Scale of study</th>
<th>MTBE removal (%)</th>
<th>Treatment time</th>
<th>EEO (kWh/m3)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV/TiO$_2$</td>
<td>Bench scale</td>
<td>>95</td>
<td>30 min</td>
<td>Not reported</td>
<td>Tawabini et al. 2013</td>
</tr>
<tr>
<td>UVC/CNTs</td>
<td>Bench scale</td>
<td>70</td>
<td>30 min</td>
<td>Not reported</td>
<td></td>
</tr>
<tr>
<td>UV/CNT-TiO$_2$</td>
<td>Bench scale</td>
<td>>60</td>
<td>120 min</td>
<td>Not reported</td>
<td></td>
</tr>
<tr>
<td>UV/O$_3$</td>
<td>Bench scale</td>
<td>70-80</td>
<td>30 min</td>
<td>Not reported</td>
<td>Tawabini. 2014</td>
</tr>
<tr>
<td>UV/H$_2$O$_2$</td>
<td>Bench scale</td>
<td>>95</td>
<td>20 min</td>
<td>4.16-5.55</td>
<td></td>
</tr>
<tr>
<td>UV/Cl$_2$</td>
<td>Bench scale</td>
<td>>99</td>
<td>15-30</td>
<td>4.01-6.90</td>
<td>This work</td>
</tr>
</tbody>
</table>

- The MTBE removal obtained by UV/Cl$_2$ is more efficient than other AOPs.
- The EE$_O$ determined for UV/Cl$_2$ is consistent with other studies (Baus & Brauch 200, Tawabini 2014).
- The overall operation cost of UV/Cl$_2$ is cheaper than UV/H$_2$O$_2$ (Rosenfeldt et al., 2013).
Conclusion

- >99% MTBE removal efficiency was achieved using LP UV/Cl₂ in both DI water & groundwater

- Less chemical consumption, short treatment time and relatively low EE_O was attained
Recommendations

• The following recommendations are proposed:
 – Further study is need on chlorine based chemical oxidation process
 – The chlorine based advanced oxidation process in combination with other oxidant should be investigated
 – The cost estimation for UV/Cl$_2$ in terms of energy and operation needs further investigation at pilot scale
Acknowledgment

• I would like thank
 – Earth Sciences Department for allowing me to conduct this study in the Env’tal lab and different support during the study
 – Center for Environment and Water (CEW)
THANK YOU!