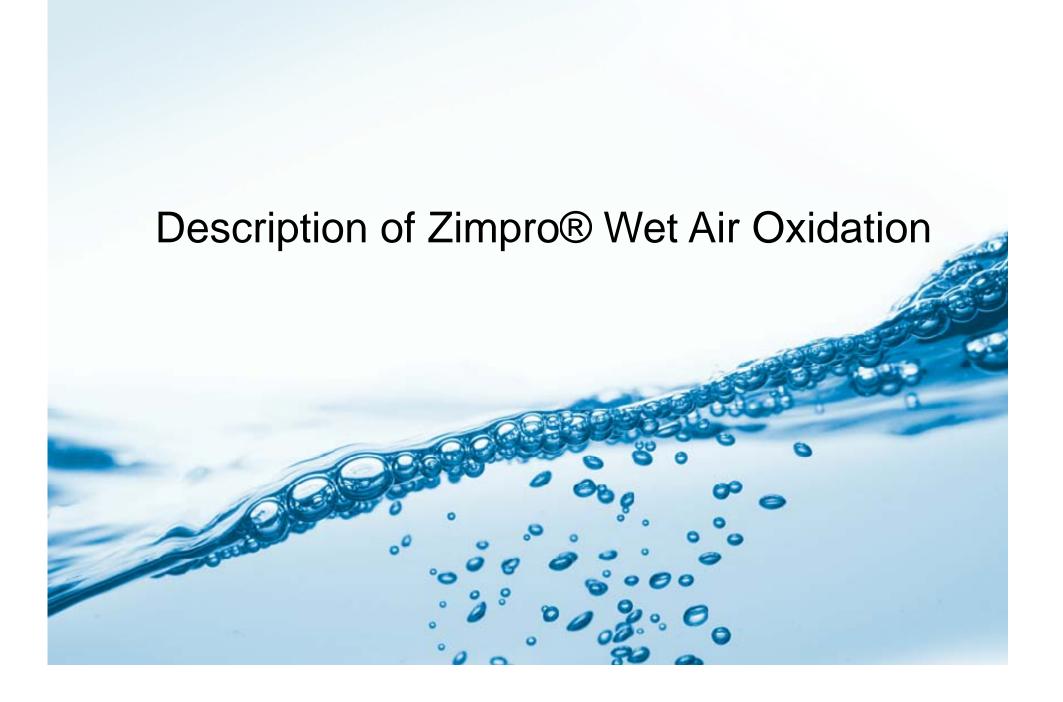


Zimpro® Wet Air Oxidation

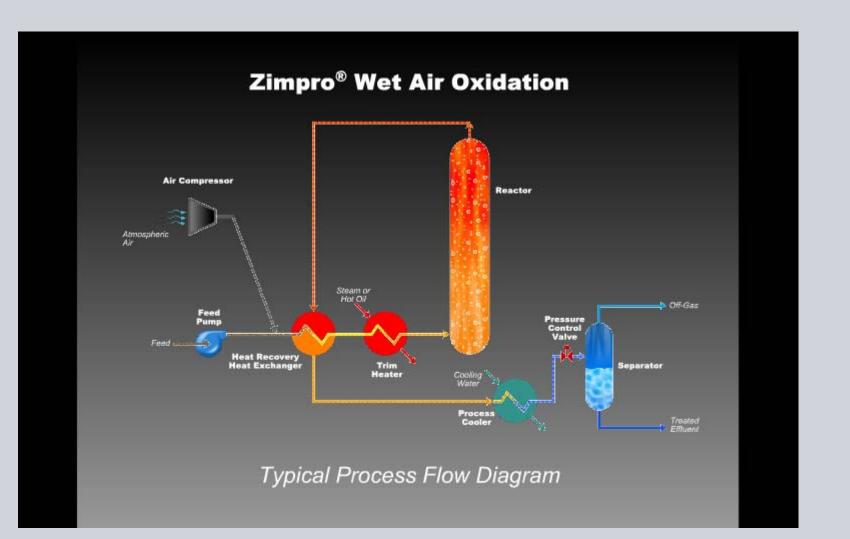
EnviroArabia 2007

Chad Felch

Dr. Michael Howdeshell


© Siemens AG 2006. All rights reserved.

Introduction / Contents


Overview

- Description of the Zimpro® WAO process
- Description of spent caustic samples
- Test Procedures
- Results
- Full-Scale Zimpro® WAO Cases
- Conclusions

Protection notice / Copyright notice

Wet Air Oxidation – Typical Process Flow Diagram

Protection notice / Copyright notice

Water Technologies

SIEMENS

Wet Air Oxidation

Process Variables

- Oxidation temperature and pressure
- Hydraulic detention time
- Oxidant typically air or oxygen
- Flow configuration
- Catalyst

Wet Air Oxidation For High Strength Industrial Wastewaters

Repsol POSM, Tarragona, Spain

- Destruction of specific constituents
- Pretreatment for biological polishing
- Gross reduction in COD loading

Protection notice / Copyright notice

Wet Air Oxidation – High Strength Industrial Wastewaters



Typical Industrial Wet Air Oxidation Feed Characteristics

- Flow range: 1 to 50 m³/h
- COD range: 10,000 mg/l to 100,000 mg/l
- Temperature Range: 150 to 320°C
- Pressure range: 5 to 225 barg

Protection notice / Copyright notice

Description of Spent Caustic Streams

Classification of Spent Caustics

Туре	Principle COD Source	Source
Sulfidic	Sulfides and/or mercaptans	Ethylene or LPG Scrubbers
Cresylic	Phenolic compounds and reduced sulfur	Scrubbing or FCC gasoline washes
Naphthenic	Naphthenic compounds and reduced sulfur	Scrubbing kerosene, diesel, and jet fuel

Protection notice / Copyright notice

Issues With Spent Caustic Produced in the Petrochemical Industry

SIEMENS

- Odors caused by sulfides, mercaptans and volatile organics
- Hazards associated with toxicity
- High chemical oxygen demand
- Tendency to foam
- Corrosive
- Potential inhibitory or toxic effects in biological treatment

Reactions During WAO of Spent Caustics

Sulfide

 $NaHS + 2 O_2 + NaOH => Na_2SO_4 + H_2O$

Mercaptan

 $NaSR + \frac{3}{2}O_2 => RSO_3 - Na$

Cresylic

- $C_6H_5O-Na + 7 O_2 + 11 NaOH => 6 Na_2CO_3 + 8 H_2O$
- $C_6H_5O-Na + 5^{1}/_2O_2 + 8^{3}/_4NaOH => 4^{1}/_2Na_2CO_3 + 3^{1}/_4CH_3COO-Na + 5^{3}/_4H_2O$

Naphthenic

- Na- $C_{12}H_{22}O_2 + 16^{3}/_4 O_2 + 23 \text{ NaOH} => 12 \text{ Na}_2CO_3 + 22^{1}/_2 H_2O$
- Na-C₁₂H₂₂O₂ + $13^{1}/_{4}$ O₂ + $17^{3}/_{4}$ NaOH => $8^{1}/_{2}$ Na₂CO₃ + $1^{3}/_{4}$ CH₃COO-Na + $17^{1}/_{4}$ H₂O

Protection notice / Copyright notice

Laboratory Testing Objectives and Procedures

Study Objectives

- 1. To investigate the effect of temperature on the destruction of chemical oxygen demand in different types of spent caustic streams.
- 2. To investigate the biodegradability of effluent from wet air oxidation of spent caustic at various WAO oxidation conditions.

Test Apparatus

- Laboratory WAO testing was performed in autoclaves constructed from nickel 200 or Inconel 600
- The volume of the autoclaves ranged between 500 ml to 750 ml

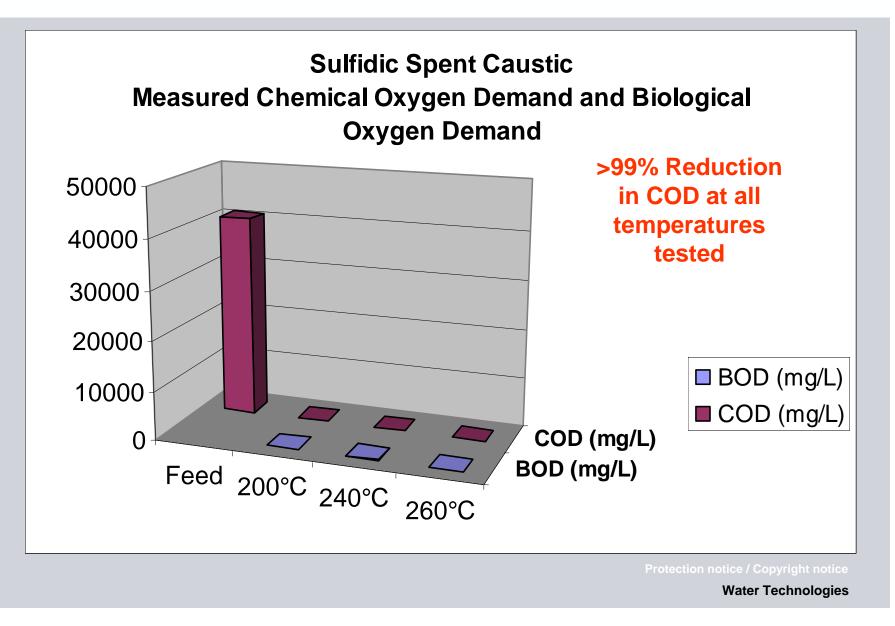
Protection notice / Copyright notice

Test Apparatus

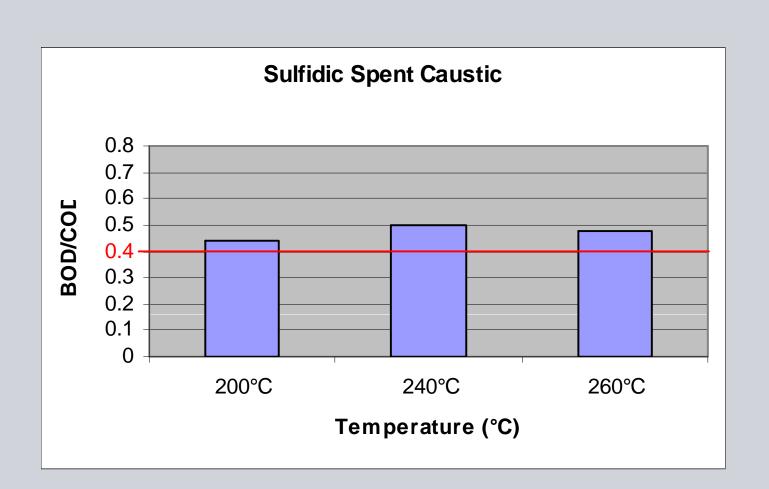
The autoclave reactor is loaded into a shaking heater assembly for mixing and temperature control

Protection notice / Copyright notice

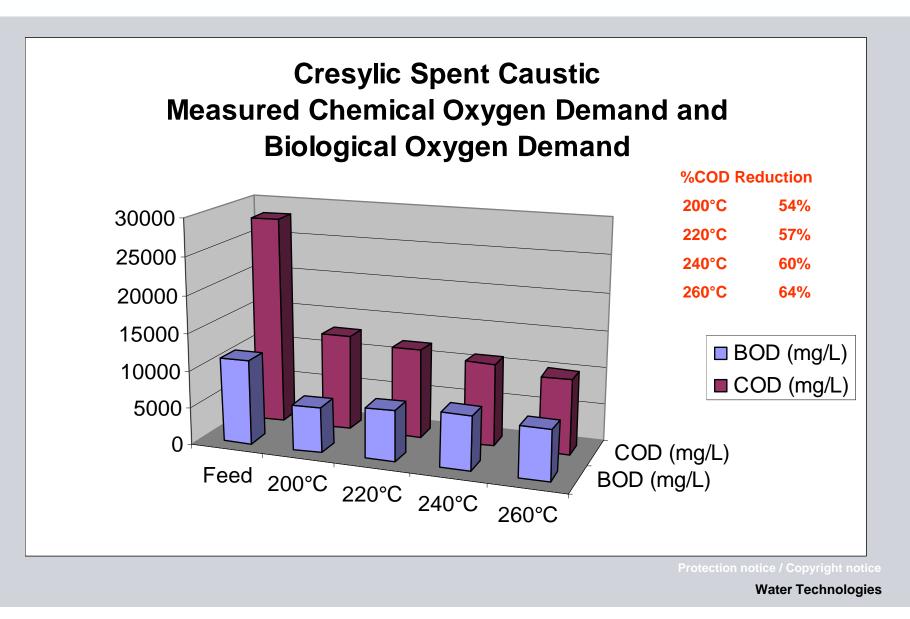
Determination of Biodegradability


Biodegradability was monitored in two ways

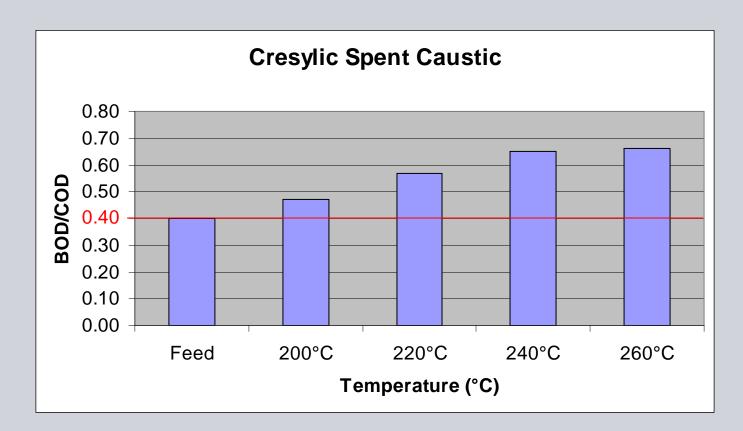
- 1. BOD to COD Ratio (BOD/COD > 0.4 is considered readily biodegradable)
- 2. An analytical investigation of the types of organics present in the oxidized effluent samples.


Protection notice / Copyright notice

Results – Sulfidic Spent Caustic

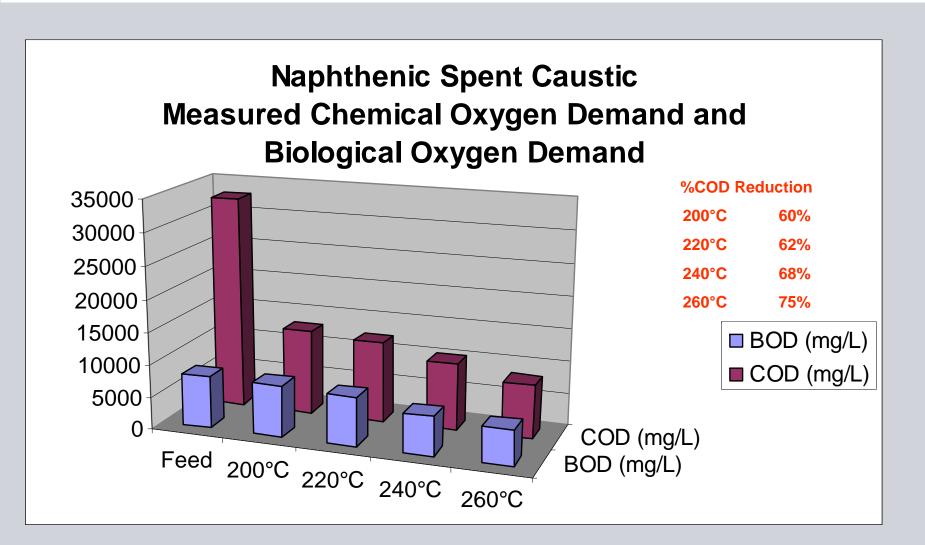


Results – Sulfidic Spent Caustic

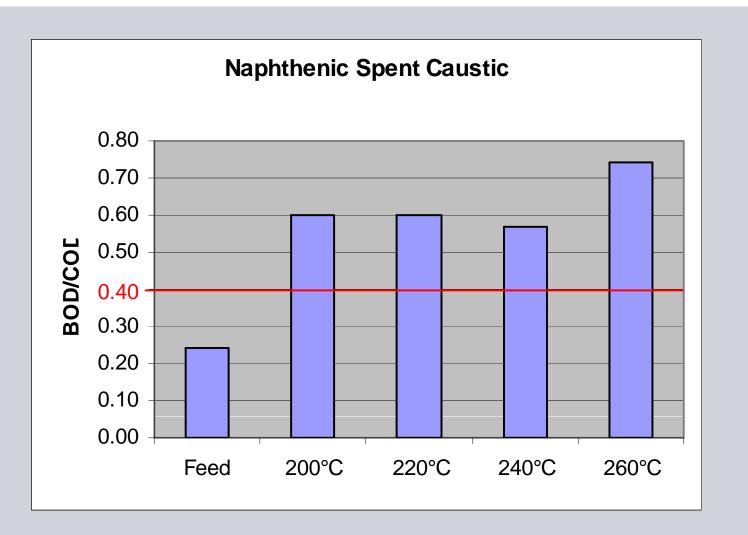


Protection notice / Copyright notice

Results – Cresylic Spent Caustic



Results – Cresylic Spent Caustic


Protection notice / Copyright notice

Results – Naphthenic Spent Caustic

Protection notice / Copyright notice

Results – Naphthenic Spent Caustic

Protection notice / Copyright notice

TOC - Investigation

			Sulfidic	Cresylic	Naphthenic
	Reported As	Units			
Oxidation Temperature		°C	200	240	260
Retention Time		min	60	60	60
тос	С	mg/L	3370	2420	2770
Acetic Acid	CH ₃ COOH	mg/L	5650	1720	3190
Formic Acid	НСООН	mg/L	760	1910	2820
Fumaric Acid	HOOCCH=CHCOOH	mg/L	11	9	<1
Propionic Acid	CH ₃ CH ₂ COOH	mg/L	620	<250	<100
Succinic Acid	HOOCCH ₂ CH ₂ COOH	mg/L	940	360	599
Oxalic Acid	нооссоон	mg/L	560	1610	1560
Acetone	CH ₃ COCH ₃	mg/L			202
% Recovery of TOC		%	97.8	73.0	101

Protection notice / Copyright notice

Full Scale WAO Case Studies

Full Scale WAO Case Study - Sulfidic

etention Ti	me - 60 minu	ites
	Feed	Effluent
Units		
mg/L	10880	2410
mg/L	1060	930
mg/L	3380	<1
mg/L	1790	34
%		77.8 12.3
	mg/L mg/L mg/L mg/L	Units mg/L 10880 mg/L 1060 mg/L 3380 mg/L 1790

There are currently >30 full scale WAO systems treating sulfidic spent caustic. There have been no reported issues with biodegradability of the oxidized effluent.

Protection notice / Copyright notice

Full Scale WAO Case Study - Cresylic

Data From A Full Scale WAO Unit Treating Cresylic Spent Caustic			
Temperature - 260°C Retention Time - 60 minutes			
		Feed	Effluent
Analysis	Units		
COD	mg/L	71200	15400
тос	mg/L	20800	5790
Sulfide-S	mg/L	2870	<1
Thiosulfate-S	mg/L	520	<30
BOD	mg/L		7900
BOD/COD			0.51
COD Destruction	%		78.4
TOC Destruction	%		72.2

Protection notice / Copyright notice

Full Scale WAO Case Study - Naphthenic

Data From A Full Scale WAO Unit Treating Naphthenic Spent Caustic			
Temperature - 250°C Retention Time - 90 minutes			
		Feed	Effluent
Analysis	Units		
COD	mg/L	62600	9750
тос	mg/L	12000	3250
Sulfide-S	mg/L	6820	<1
Thiosulfate-S	mg/L	1610	<40
BOD	mg/L		5710
BOD/COD			0.59
COD Destruction	%		84.4
TOC Destruction	%		73.0

Protection notice / Copyright notice

Conclusions

- 1. COD destruction increased with oxidation temperature
- 2. WAO was effective at eliminating compounds responsible for causing odor issues such as sulfide and mercaptans.
- 3. WAO increased the BOD/COD ratio
- 4. Majority of the TOC present in oxidized spent caustic samples was small chain organic acids.

Contact

Dr. Michael Howdeshell Research & Development Director Siemens Water Technology

301 W Military Rd Rothschild, WI 54474

Phone: (715) 355-3450

michael.howdeshell@siemens.com

Chad Felch Director of Technical Services Siemens Water Technology

301 W Military Rd Rothschild, WI 54474

Phone: (715) 355-3237

chad.felch@siemens.com

Protection notice / Copyright notice

