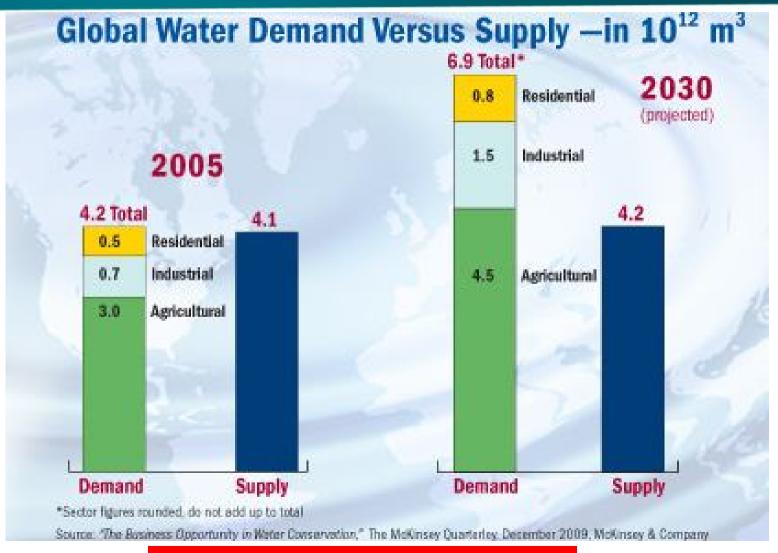


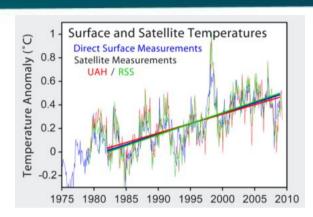
Gary Amy

Director, Water Desalination and Reuse Center King Abdullah University of Science and Technology, Saudi Arabia



Impaired Quality Sources and *Drivers* for their Use

Global Water Demand vs. Supply



Traditional Sources: Inadequate

Drivers for Increased Exploitation of Impaired Quality Sources

- Climate Change
 - Water Scarcity
 - ➤ Water Quality (and Temperature)
- Urbanization
 - > Increased Water Demand
 - Peri-Urban Growth
 - → outside service area
- Demographics
 - **→** Population Shifts
 - ➤ Developing → Transitional
 - → Developed Countries (example of China)

Impaired Quality (Drinking Water) Sources

- Seawater
 - Infinite Resource; Generally Constant Quality
 - Constraints: High Salinity (TDS) and Proximity to Coast
- Wastewater (Effluent)
 - A Proximate Source (Sewer Mining Possible)
 - Possible to Target Separate Wastestreams (e.g., Grey Water)
 - Also, Wastewater-Impacted Drinking Water (% effluent)
 - Constraints
 - Organic Micropollutants and Emerging Pathogens
 - Delivery Reclaimed Water to Point(s) of Use
- (Urban) Stormwater Runoff
 - Constraints: Delivery Pattern, and Trace Metals and Organics

Potential for Use of Impaired Quality Sources

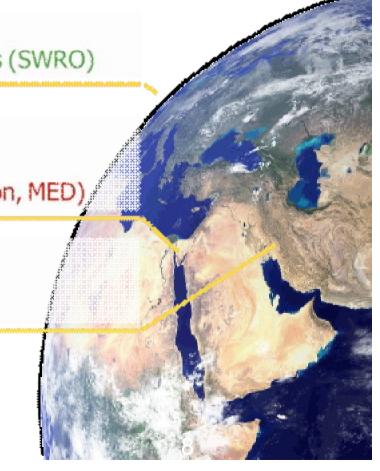
Where is the Water?

	Volume (km ³)	% of Total
Surface	230,000	0.017
Subsurface	8,400,000	0.625
Icecaps and Glaciers	29,200,000	2.15
Atmosphere	13,000	0.001
Oceans	1,321,000,000	97.2

40 % of World's Population Live within 100 km of Coastline (and increasing)

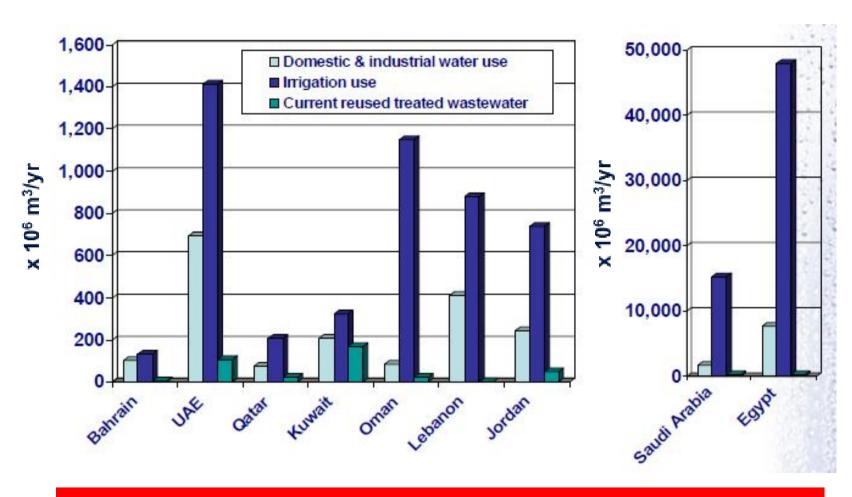
Global seawater desalination capacity: concentrated in GCC and MENA regions

 76% of the global capacity is located in three sea areas:


17% in the Mediterranean Sea, of which 70% is produced by seawater reverse osmosis (SWRO)

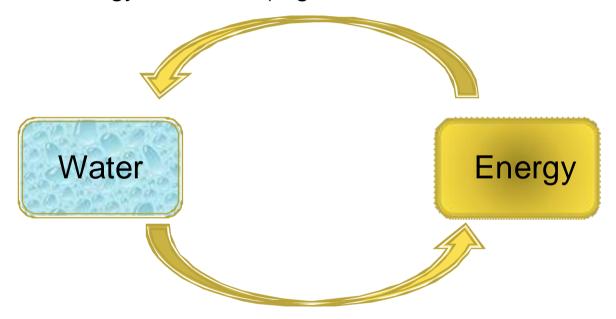
14% in the Red Sea, of which72% is produced by distillation(Multi-Stage Flash, MSF; Multi-Effect Distillation, MED)

45% in the Arabian Gulf, of which 90% is produced by distillation (MSF, MED)


In GCC/MENA Regions: Dominated by (Energy) Inefficient Thermal Processes

Data source: IDA Worldwide Desalting Plant Inventory (2007, 2009)

WASTEWATER GENERATION AND REUSE in GCC/MENA Region (GWI, 2006)



<< 10 % of Wastewater Generated is Reused in GCC/MENA

Water-Energy Nexus

Energy for Water (e.g., SWRO, thermal distillation)

Water for Energy (e.g., oil extraction, cooling water)

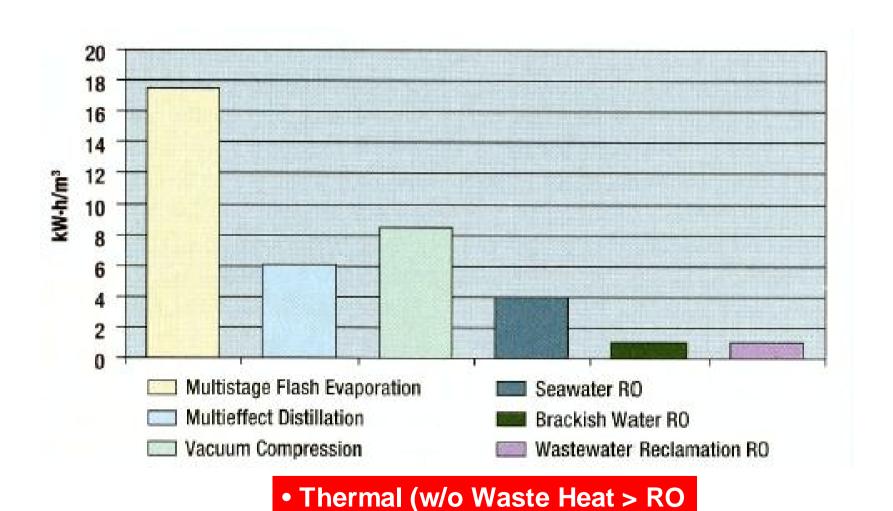
Trends

- Energy Compensation in SWRO (Greening of SWRO)
- Energy Recovery (Self Sufficiency) in Wastewater Treatment
- Exploitation of WW RO over SWRO First (1-2 vs. 3-4 kWh/m³)

How to Exploit Impaired Quality Sources

Water Scarcity Leads to Consideration of Advanced Treatment

- Potable water from sea water
 - > Removal of dissolved salts (membrane treatment)
- Reclaiming used water
 - Removal of dissolved salts (membrane treatment)
 - Efficient disinfection with fewer by-products (UV)
 - Removal of dissolved contaminants (membrane treatment, oxidation, or adsorption)



Total Energy Requirements Of Various Desalination Processes (Wilf, 2009)

• WW RO < BWRO < SWRO

13

Advanced Technology Trends: Wastewater Reuse

- UV Disinfection
 - ➤ Increasing Use of Both

 Low Pressure (LP) and

 Medium Pressure (MP) Technologies

 for Primary Disinfection Targeting

 Protozoa (Cryptosporidium)
 - ► LP → MP⇒ Footprint, Lamp Replacement
 - ➤ Disinfection with Minimal DBPs; reduction of nitrate to nitrite w/ MP

Advanced Technology Trends: Wastewater Reuse - cont

- Ozone and
 UV Based Advanced Oxidation
 - ➤ Using Ozone for *Selective*, or

 UV Based AOP (OH•) for *Non-Selective* Oxidation

 of Organic Micropolutants

 in Wastewater Effluent

Advanced Technology Trends: Wastewater Reuse - cont

Membranes

- Low-Pressure Membrane Filtration (MF/UF)
 - Larger Module, Greater Flux
 - Standardization of Modules
- > High Pressure Membrane Separation (NF/RO)
 - More Energy Efficient, Greater Water Recovery
 - Nanotechnology Applications (improved permeability, selectivity, self cleaning membranes)
- New Materials (e.g., modified surfaces, ceramic materials)
- New Systems (e.g., Integrated Membrane Systems (IIVIS))

Advanced Technology Trends: Wastewater Reuse - cont

- Selective Adsorbents
 - ➤ Selective Iron-Oxides (e.g., GFH) for Targeting Inorganic Micropollutants and P from Urban Stormwater Runoff
 - Selective Ion Exchange Media for Targeting Anionic PhACs

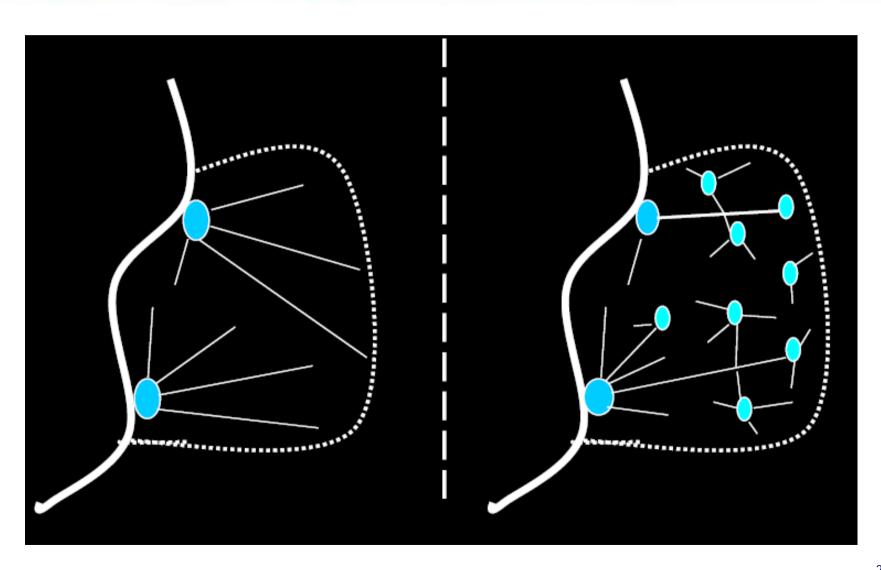
Natural Treatment Technologies 😪

Wastewater Reuse

- > ARR, SAT
- Removal of Organic Matter, Organic Micropollutants, Pathogens, and Nitrogen from Wastewater Effluent
- A Potentially Complete System
- Seawater Pretreatment
 - **Beach Wells**
 - No Chemicals,Low Environmental Impact

Advanced Treatment Hybrids

- ARR → Membranes
 - > Lowered membrane fouling; secondary barrier for micropollutants
- Oxidation → ARR
 - **➤** Biodegradation of oxidation metabolites
- Oxidation → Membranes
 - Chemical tolerance of ceramic membranes
- Adsorption + Membranes
 - Nanoparticles as adsorbents (Fe), catalysts (Pd), or disinfectants (Ag) coupled with (UF) membrane


Centralized vs. Decentralized Options for DW Treatment of Impaired Sources

- Continuum of Choices
 - Centralized, Larger System (seawater)
 - ➤ Nodal Systems (WW effluent)
 - Clusters (WW effluent)
 - Point of Use (POU) (grey water reuse)
- Considerations
 - Efficiency
 - > Sustainability
 - Appropriateness

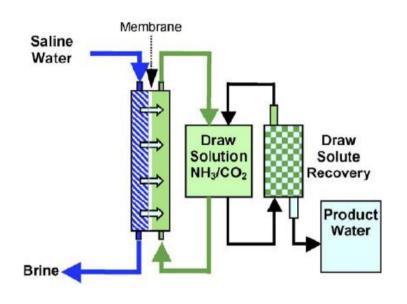
Moving from a Centralized to a WW Reuse Nodal System (Reiter, 2008)

New Desalination Concepts and Trends

Desalination Trends

- Membrane-Based (SWRO) > Thermal
- Integrated Membrane System (IMS)
 - C-MF or UF w/o chemicals + RO
- Beach Wells (a biofiltration process)
- Exploitation of Estuarine/Bay Sources (lower TDS)
- Pre-treatment of SWRO with Nanofiltration (NF)
 - NF removal of divalent ions responsible for scaling
 - Higher RO recovery
- Tandem NF-NF (in series, two-pass of permeate)
- Renewable energy hybrids (energy compensation)
 - ➤ Australia: Wind Farms (wind turbines) + SWRO
- New membrane membrane materials
 - Carbon nano-tubes or Zeolyte composites for high flux polymeric membranes
 - Ceramic materials
- Partial Desalination (e.g., single-pass NF) for Salt Tolerant Crops

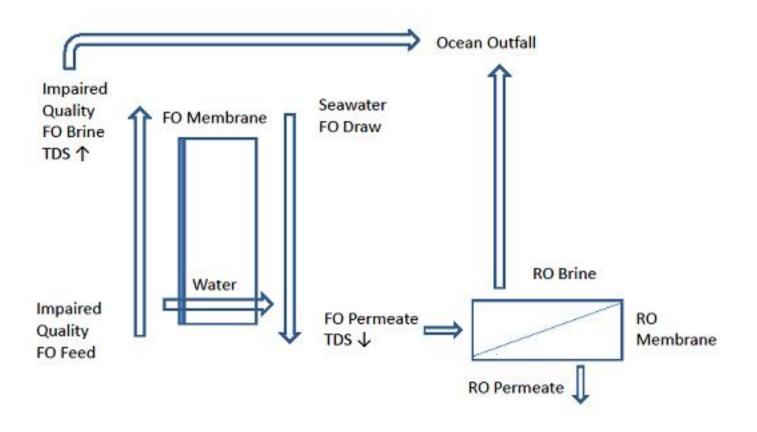
Greening of SWRO



- Subsurface Intake (beach well)
 - No impingement/entrainment
 - Pretreatment w/o chemicals
- Minimize Chemical Use
 - UF w/o chemicals
 - ➤ No antiscalants (scaling control by acid addition and/or limiting recovery)
- Brine Disposal through Outfall (Multiport) Diffuser
 - Minimize extent of mixing zone)
- Integration of Renewable Energy (e.g., wind or solar)
 into Design and Operation

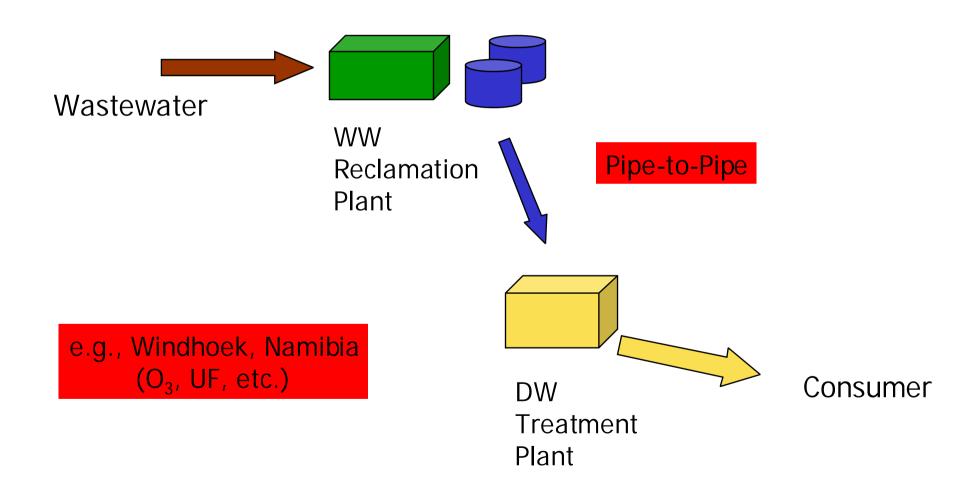
New (Membrane-Based) Desalination Approaches

- Forward Osmosis (FO)
 - RO membrane, but osmosis not pressure-driven
 - Low energy, low fouling
 - FO/RO Hybrid
 - Challenges
 - Better FO Membrane (lower resistance)
 - More Imaginative Draw Solutions (e.g., magnetic nanoparticles)
 - Element/Module Configuration

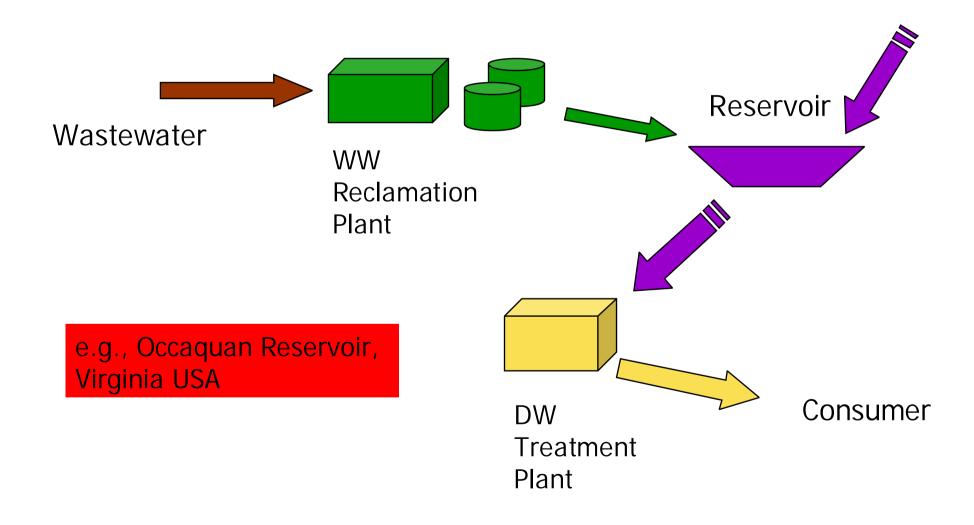

New (Membrane-Based) Desalination Approaches - cont

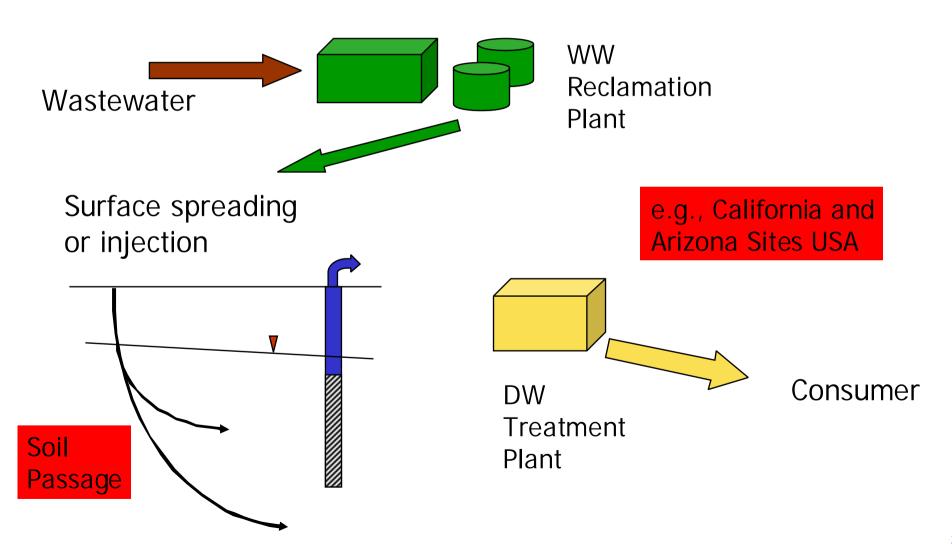
- Membrane Distillation (MD)
 - Hydrophobic membrane + evaporation process
 - > Temperature driven (but lower than conventional distillation)
 - Can be coupled with waste heat or solar energy
 - Challenges
 - Better (Hydrophobic) Membrane
 - Management of Temperature Polarization (Spacers)

Impaired Quality Feed to Drive FO Desalination (FO-RO Hybrid)



towards... Potable Reuse and Other Reuse Opportunities


Direct Potable Reuse X

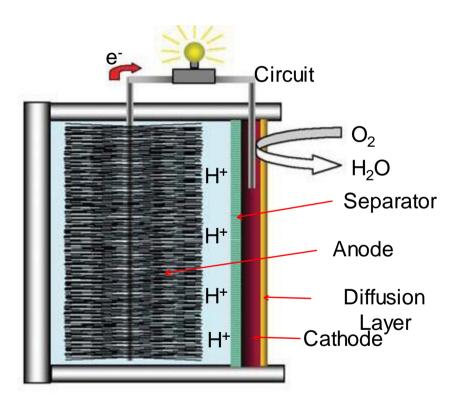

Indirect Potable Reuse

Indirect Potable Reuse

Other Reuse Opportunities

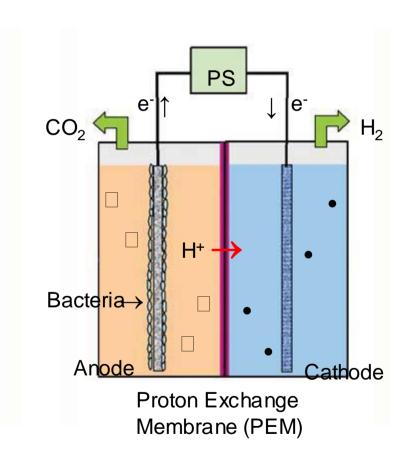
- Cascading Water Use
- Grey Water Segregation and Reuse
- Urine Diversion and Nutrient Recovery
- Dual Piping Systems (smaller demand for high quality water)
- Market(s) Developing for Reclaimed Water

and back to... the Energy-Water Nexus


Energy Usage by Wastewater Treatment and Desalination Processes (Logan, 2009)

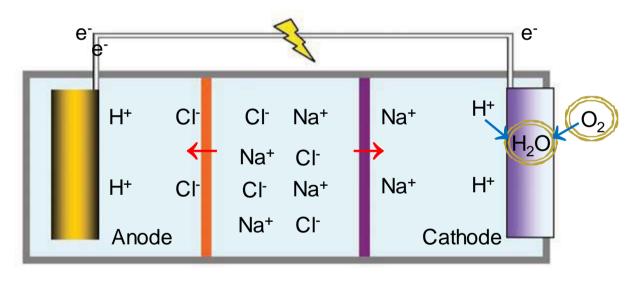
Process	Energy Requirement (kWh/m³)
Trickling Filter	0.12
Activated Sludge	0.28 - 0.71
Membrane Bioreactor	2.4
SWRO	3.0

Microbial Fuel Cell (MFC): Wastewater Treatment While Producing Energy (Bioelectricity) (Logan, 2009)



- Certain Bacteria Directly Produce Electrical Current While Degrading WW
- New Low-Energy (Self Sufficient) Opportunity for WW Reclamation/Reuse
- Removal of Sulfide, Nitrate, Halogenated Organic Demonstrated

Microbial Electrolysis Cell (MEC): Wastewater Treatment While Producing Energy (Hydrogen Gas) (Logan, 2009)



- Further Modification of a MFC (excluding oxygen)
- New Low-Energy Opportunity (H₂ Production) for WW Reclamation/Reuse

Microbial Desalination Cell (MDC): Desalination While Producing Energy (Logan, 2009)

Anion Exchange Cation Exchange Membrane (AEM) Membrane (CEM)

- Further modification of MFC (ion exchange membranes)
- New Low-Energy Opportunity for Desalination (up to 99 % demonstrated)
- Research Needs: Metter Membranes and Module Configuration

