MemJet Membrane Bioreactor Technology

USFilter, Jet Tech Products

Presentation Outline

- Membrane Filtration Basics
- MBR Evolution
- Value of MBR Technology
- USFilter MBR design
- Pilot Capabilities
- Demonstration Plant

Membrane Filtration Basics

Low-Pressure Polymeric Membrane

Membrane Filtration Spectrum

Membrane Spectrum

INCREASING TRANSMEMBRANE PRESSURE DECREASING MEMBRANE OPERATIONAL LIFE

Filtration in the 0.1 micron range is the most widely used membrane type in wastewater treatment applications.

Definitions

- Immersed membrane: Membrane submerged directly in process, outside to inside flow under vacuum
- Flux: Loading rate of flow per membrane surface area in GPD/Ft² ("GFD")
- TMP: Pressure across membrane surface in PSI
- Permeability: Flux divided by the pressure GFD/PSI
- Packing Density: Area of fibers divided by module area
- Lumen: Open center of the fiber
- Backpulse: Reverse flow with change from vacuum to pressure on membrane
- Maintenance Clean: Short term, in-process cleaning procedure
- CIP: Clean-In-Place chemical clean process

Four-Module Pilot

Membrane Configurations

- Polymer Monolith
 - Single material (homogeneous)
 - Self-supporting
 - Single manufacturing process
 - Hollow fiber configuration only

Laminate

- Multiple materials (non-homogeneous)
- Multiple manufacturing processes
- Supported
- Hollow fiber or flat-sheet configuration

Polymer Monolith

Symmetrical

- Pore structure similar through membrane depth
- Microfiltration only

- Asymmetrical (used in MBR)
 - Also called "skin" membranes
 - Very thin, tight membrane layer at surface with macroporous substructure
 - Microfiltration
 - Ultrafiltration

Laminated Membrane

Membrane

• Membrane is applied to a substrate or backing for support

Mechanical bond is critical

Membrane Comparison

Characteristic	Polymer Monolith	Laminate
Materials	1 (Homogeneous)	2 or more
Tensile Strength	Low	High
Radial Strength	High	Low
Delamination Potential	None	Yes
USFilter Configuration	Yes	Νο

Membrane Bioreactor Evolution

Tubular Membrane Feed & Bleed MBR's

Commercialized Mid 1970's

Cross Flow Tubular

Low surface area - high energy consumption

Cross Flow Tubular

Low surface area - high energy consumption

Immersed Membrane MBR

High surface area – reduced energy consumption

Commercialized 1990's

Recirculation

Permeate

low vacuum pressure (up to 7.5 psi)

Benefits of Immersed MBR Technology

Value of MBR technology over conventional processes

- Fewer process steps to achieve comparable effluent quality
- Eliminates sludge settleability problems
- Small Footprint
- Modular expansion capability
- Reduced sludge yield
- High quality effluent
 - Low effluent turbidity
 - Excellent nutrient removal capability
 - High rejection efficiency of organic constituents, solids and micro-organisms
 - Uncompromised effluent in upset conditions

"Less is More"

Conventional Process Using Low Pressure Membranes

Integrated Membrane Bioreactor

Integrated Membrane Bioreactor Process HIGH MLSS

8,000 - 16,000 mg/l

2,000 - 4,000 mg/l

F BOD Loading M MLSS X Aeration Vol.

Integrated Membrane Bioreactor Process

CONVENTIONAL MBR

Small Footprint

Integrated Membrane Bioreactor Process

Where do MBR's fit?

- Advanced phosphorus and nitrogen removal
- Effluent reuse and recharge
- Limited footprint
- Upgrade of existing plants
 - Increased flow in existing tankage
 - Restricted effluent requirements
 - Nutrient reduction
 - Add-on to existing biological process

USFilter

MemJet

MBR Technology

Managing the Membrane Environment

Keys to success:

- Fine screening
- Controlling fluid transfer

Failure results in:

- Solids packing around fibers
- High Fluid Viscosity around fibers
- Loss of Permeability (Fouling)
- High Maintenance

USFilter MBR Design

Managing the Membrane Environment
Fluid Renewal System (Two-Phase Jet)
Separated Membrane Process

Maintenance Procedures

- Backpulse
- Maintenance Clean
- CIP

Integrity Test Capability

Ability to predict turbidity breakthrough, identify source, and repair

Features & Benefits of USFilter MBR

- Controlled environment around membrane system
- Positive fluid transfer into fiber bundles
- <u>Uniform</u> distribution of flow and solids
- Cross-flow dynamics minimize energy consumption
- Automated, in-place, membrane cleaning process (membrane removal unnecessary)
- Safe environment for plant operators
- Flexibility in biological process selection

Bottom of Module

Air & Mixed Liquor "Ports"

vides even distribution r & mixed liquor <u>within</u> ule

-divides module into ller partitioned bundles

nembrane fibers are

Membrane Operating System

ed liquor orflow & ase loval nembranes

d liquor / embranes Uniform air/mixed liquor distribution across membranes

liquor & air operated endently Combination of Cross-Flow Dynamics and Dead-End Filtration

actors impacting cleaning interval

rescreen: Poor prescreen will cause fibers and debris be trapped in fiber bundles restricting movement

ree oils and greases: These can coat the membranes nd decrease flux. Standard municipal wastewater not a roblem.

olymers: High concentration of polymers can coat embranes and decrease flux.

ermeability Curve - Flux vs. TMP bact of fouling layer on permeability

ow Control Operation

TMP vs. Time

0

Membrane Maintenance

> Backpulse

- Maintenance Clean
- > Relaxation
- Clean-In-Place (CIP)

kpulse

- **Completely Automated**
- Every 12-20 minutes
- 15 second duration
- **Reverse flow utilizing filtrate pumps**
- Jet with mixed liquor and air remains in operation

axation

- **Completely Automated**
- Using periodically to reduce solids buildup on membrane surface
- Relieves solids tension on membrane
- surface so they are scoured away
- Filtrate pumps are stopped
- Jet with mixed liquor and air remains in operation

ntenance Clean

- **Completely Automated**
- Every 1-2 weeks on larger plants
- **30-40 minutes duration**
- nject chlorinated filtrate (200 mg/l) into membrane
- nhibits biological surface fouling
- Mixed liquor remains in tank

an-In-Place (CIP)

- Automated no membrane removal
- **Every 2-6 Months**
- 4-6 hours per membrane cell
- Mixed liquor sent back to biological tanks
- Jtilizes chlorine @ approximately 1,000 mg/l
- **Occasional acid cleans for inorganic fouling**

fect of CIP Frequency

cations **Piloting**

omplete "Rack" Assembly

MBR Demonstration Plant

Kansas City, Kansas MUD

ant Design

- Design capacity 50,000 GPD
- **Complete plant includes**
- Fine Screen
- Anaerobic Reactor
- Two-stage Anoxic Reactor
- Aerobic Reactor
- Membrane Operating System (MOS)
- Aerobic Digester

Biological Process Tanks

or questions:

mitri.lazarou @ veoliawater.com

Thank you for your CONCERN