Wastewater Treatment Plant Energy Reduction With High Efficiency Aerators

Rabea Manakhah, David Evans
Saudi Aramco Utilities Department
Roger Gyger
m2t technologies

© Copyright 2011, Saudi Aramco. All rights reserved.
OBJECTIVE

TO PRESENT HIGH EFFICIENCY AERATORS THAT WILL REDUCE ENERGY CONSUMPTION IN WASTEWATER TREATMENT PLANTS, BASED ON EXPERIENCE AT THE DHAHRAN NORTH SEWAGE TREATMENT PLANT (NSTP)
OUTLINE

• BACKGROUND
• EVALUATION
• HIGHER MECHANICAL AERATOR EFFICIENCY
• DHAHRAN NSTP PROJECT
• CONCLUSION
OUTLINE

• BACKGROUND
• EVALUATION
• HIGHER MECHANICAL AERATOR EFFICIENCY
• DHAHRAN NSTP PROJECT
• CONCLUSION
Dhahran NSTP Overview

Dhahran North Sewage Treatment Plant

Dhahran Advanced Wastewater Treatment Plant

Secondary Biological Treatment

Tertiary-Filtration Treatment
EXISTING AERATORS LOW EFFICIENCY
OUTLINE

• BACKGROUND
• EVALUATION
• HIGHER MECHANICAL AERATOR EFFICIENCY
• DHAHRAN NSTP PROJECT
• CONCLUSION
Energy Efficient Aeration Alternatives

Fine Bubble Diffusers

High Efficiency Mechanical Aerators
Energy Efficient Aeration Alternatives

<table>
<thead>
<tr>
<th>SYSTEM TYPE</th>
<th>FINE BUBBLE DIFFUSERS</th>
<th>HIGH EFFICIENCY MECHANICAL AERATORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOFOULING</td>
<td>Biofouling sometimes reduces efficiency. Acid Cleaning Sometimes Required.</td>
<td>None.</td>
</tr>
<tr>
<td>ENERGY EFFICIENCY</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>ESTIMATED CAPITAL COST</td>
<td>More Expensive</td>
<td>Less Expensive</td>
</tr>
</tbody>
</table>
ESTIMATED ELECTRIC POWER COSTS

<table>
<thead>
<tr>
<th>AERATOR</th>
<th>O_2 TRANSFER LB O_2/HP·HR</th>
<th>POWER USD/YEAR</th>
<th>SAVINGS USD/YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPICAL MECHANICAL AERATORS</td>
<td>2.5</td>
<td>$146,000</td>
<td>0</td>
</tr>
<tr>
<td>HIGH EFFICIENCY MECHANICAL AERATORS</td>
<td>3.5</td>
<td>$88,000</td>
<td>$58,000</td>
</tr>
</tbody>
</table>
OUTLINE

• BACKGROUND
• EVALUATION
• HIGHER MECHANICAL AERATOR EFFICIENCY
• DHAHRAN NSTP PROJECT
• CONCLUSION
Fundamentals of Surface Aeration

- Surface Aeration is a distinct two-step process consisting of the “Spray Zone” and the “Re-Aeration Zone.”

- Approximately 66% of the mass transfer occurs in the “Re-Aeration Zone.”

- The “Re-Aeration Zone” is enhanced by fluid volume and higher pumping rates through the surface aerator.

- Novel system configurations can optimize the performance of both the “Spray” and “Re-Aeration” zones.
Surface Aeration System
Oxygen Transfer Characteristics

Surface Re-aeration Mass Transfer Zone

Spray Mass Transfer Zone
HI-FLO Surface Aeration System Impeller
Computational Fluid Dynamics (CFD)

Rigorous fluid dynamics simulation provides fundamental mixing insight
- Detailed impeller geometry used
 - Sliding-mesh model for impellers
- No experimental velocity data used as input
- Solve turbulent Navier-Stokes equations to obtain flow field
Technology Development Facilities
State College, PA., USA
m²t technologies Full Scale Aeration Test Facility
OUTLINE

• BACKGROUND
• EVALUATION
• HIGHER MECHANICAL AERATOR EFFICIENCY
• DHAHRAN NSTP PROJECT
• CONCLUSION
Dhahran NSTP Plant Overview

- Converting Cell A to anoxic
- New Trains 6&7 constructed here
- Existing Trains 1-5
Construction of New Aeration Basins
Aeration Platform Elevation Check
HI-FLO Aerator Impeller Installation
Dhahran Aeration System Process Requirements

<table>
<thead>
<tr>
<th>Stage</th>
<th>SOTR, lbs. O$_2$/hour</th>
<th>Minimum Bottom Velocity, ft./sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>157</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>84</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>61</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Required Train Average Standard Aeration Efficiency ("SAE") of 3.5 lbs. O$_2$/BHP-hr
HI-FLO Surface Aeration Design Configuration

<table>
<thead>
<tr>
<th>Stage</th>
<th>Nameplate HP</th>
<th>Speed, rpm</th>
<th>Impeller Diameter, in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>45</td>
<td>87</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>45</td>
<td>74.5</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>45</td>
<td>74.5</td>
</tr>
</tbody>
</table>

Note: All parts in contact with the liquid were made from 316 SS
Dhahran HI-FLO Performance Test Results

<table>
<thead>
<tr>
<th>Stage</th>
<th>Measured SOTR, lbs.O₂/hour</th>
<th>Actual BHP</th>
<th>Measured Bottom Velocity, ft./sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>165.9</td>
<td>44.6</td>
<td>0.69</td>
</tr>
<tr>
<td>2</td>
<td>86.2</td>
<td>24.9</td>
<td>0.73</td>
</tr>
<tr>
<td>3</td>
<td>61.5</td>
<td>18.7</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Measured Train Average Standard Aeration Efficiency ("SAE") of 3.56 lbs. O₂/BHP-hr
HI-FLO Surface Aerator in Operation
OLD AERATORS
OUTLINE

• BACKGROUND
• EVALUATION
• HIGHER MECHANICAL AERATOR EFFICIENCY
• DHAHRAN NSTP PROJECT
• CONCLUSION
CONCLUSIONS

• HIGH EFFICIENCY MECHANICAL AERATORS ARE LOW MAINTENANCE COMPARED TO OTHER AERATION SYSTEMS

• HIGH EFFICIENCY MECHANICAL AERATORS REDUCE ENERGY CONSUMPTION
Thank you