Desalination In Saudi Arabia
An Overview

N. Nada
General Manager Desalination Nomac
Historical Background

- In 1928 King Abdul Aziz established Kendasa (Condenser) in Jeddah (MED).

- 1965 Ministry of Agriculture established desalination department.

- 1969 Duba and Alwajh desalination MSF plants commissioned 198 m³/d (52000 gpd) each.

- 1974 Saline water Conversion Corporation (SWCC) established.
Jeddah Phase 1
Daily Production In KSA

<table>
<thead>
<tr>
<th>Region</th>
<th>Production (M m³/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Coast</td>
<td>3.722</td>
</tr>
<tr>
<td>West Coast</td>
<td>3.892</td>
</tr>
<tr>
<td>Total</td>
<td>7.614</td>
</tr>
</tbody>
</table>

2.0 BGD
Desalinated Water Distribution According to Process

- RO: 14%
- Thermal: 86%
- MSF: 75%
- MED: 11%
Basic Principal for Sea Water Intake

<table>
<thead>
<tr>
<th>Coast</th>
<th>Water Type</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Coast</td>
<td>Shallow water</td>
<td>-5m depth</td>
</tr>
<tr>
<td>West Coast</td>
<td>Deep Water</td>
<td>-17 m depth</td>
</tr>
</tbody>
</table>
Sea Water Pretreatment

RO

MSF

MED
Coupling Desal Plants (Thermal or Membrane) with Power Plant reduces energy requirement for desalination by half.

Dual purpose plant or hybrid
Power + Thermal
Power + RO
Power + (Thermal + RO)
Dual Purpose Plant Configuration

(1) Back Pressure Turbine

MSF
MED
Dual Purpose Plant Configuration

(2) Extraction Condensing Turbine
FLOW DIAGRAM FOR DUAL PURPOSE PLANT WITH THERMAL DESALINATION PLANT

Fuel Gases (NO\textsubscript{x}, SO\textsubscript{x}, P, CO\textsubscript{2})

BPG Turbine

Fuel
HFO

TBT = 85c – 112c

FGD
ESP

B

Reject to sea

Anti foam

Vent

D/A

Cl\textsubscript{2}

CW

SWP

PW

BRPP
BDPP

antifoam
antiscalant
Dual Purpose Plant Configuration

(3) Condensing Turbine
Dual Purpose Plant Configuration

(4) Back Pressure Turbine + Hybridization (Thermal + RO)
Shuaibah IWPP

Project cost
SR 9,188 million ~ $ 2,450 million

Power capacity
900MW (ACWA Net 270 MW)

Water capacity
880,000 M3/day
(ACWA Net 264,000 M3/d)

Contract type
20 year PWPA based on BOO

PCOD
14 January 2010

ACWA Ownership
30%
Shuaibah Expansion IWPP

Project cost
SAR 875 million ~ $233 million

Water capacity
150,000 M³/day
ACWA Net 45,000 M³/day

Contract type
20 year WPA based on BOO

PCOD
November 2009

ACWA Ownership
30%
FLOW DIAGRAM FOR DUAL PURPOSE PLANT WITH SWRO
Shuqaiq IWPP

Project cost
SR 6,866 million ~ $ 1,831 million

Power capacity
850 MW
ACWA Net 289MW

Water capacity
212,000 M³/day
ACWA Net 72,080 M³/d

Contract type
20 year PWPA based on BOO

Scheduled PCOD
December 2010

ACWA Ownership
34%
flow diagram for SWRO
<table>
<thead>
<tr>
<th>Plant</th>
<th>Conf.</th>
<th>Power (MW)</th>
<th>Water (MGD)</th>
<th>P/W</th>
<th>Chem. Treat</th>
<th>TBT</th>
<th>Com m.</th>
<th>PR</th>
</tr>
</thead>
<tbody>
<tr>
<td>J 1</td>
<td>LT</td>
<td>50</td>
<td>ECT</td>
<td>5</td>
<td>10:1</td>
<td>Acid</td>
<td>120</td>
<td>1970 1980 10</td>
</tr>
<tr>
<td>Ak 1</td>
<td>LT</td>
<td>GT</td>
<td>5</td>
<td>5</td>
<td>Acid</td>
<td>120</td>
<td>1974 1982 10</td>
<td></td>
</tr>
<tr>
<td>J 2</td>
<td>LT</td>
<td>25</td>
<td>ECT</td>
<td>5</td>
<td>5:1</td>
<td>Acid</td>
<td>120</td>
<td>1978 2007 10</td>
</tr>
<tr>
<td>J 3</td>
<td>CT</td>
<td>62</td>
<td>ECT</td>
<td>5.8</td>
<td>10:1</td>
<td>Ad</td>
<td>107</td>
<td>1979 7</td>
</tr>
<tr>
<td>J 4</td>
<td>LT</td>
<td>120</td>
<td>ECT</td>
<td>11.6</td>
<td>10.3:1</td>
<td>Ac/Ad</td>
<td>110</td>
<td>1982 2005 7</td>
</tr>
<tr>
<td>M&Y1</td>
<td>LT</td>
<td>75</td>
<td>ECT</td>
<td>6</td>
<td>12.5:1</td>
<td>Ac/Ad</td>
<td>120</td>
<td>1982 10</td>
</tr>
<tr>
<td>Job 1</td>
<td>CT</td>
<td>60</td>
<td>ECT</td>
<td>6</td>
<td>10:1</td>
<td>Ad</td>
<td>90</td>
<td>1982 8.5</td>
</tr>
<tr>
<td>Job 2</td>
<td>CT</td>
<td>130</td>
<td>BPT</td>
<td>27.6</td>
<td>4.7:1</td>
<td>Ad</td>
<td>112</td>
<td>1983 8.5</td>
</tr>
</tbody>
</table>
2nd Generation

<table>
<thead>
<tr>
<th>Plant</th>
<th>Conf.</th>
<th>Power (MW)</th>
<th>Water (MGD)</th>
<th>P/W</th>
<th>Chem.</th>
<th>TBT</th>
<th>Comm</th>
<th>PR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sho 1</td>
<td>CT</td>
<td>60</td>
<td>BPT</td>
<td>12</td>
<td>5:1</td>
<td>Ad</td>
<td>102</td>
<td>1988</td>
</tr>
<tr>
<td>Shuq 1</td>
<td>CT</td>
<td>80</td>
<td>BPT</td>
<td>15.2</td>
<td>5.3:1</td>
<td>Ad</td>
<td>102</td>
<td>1988</td>
</tr>
<tr>
<td>Sho 2</td>
<td>CT</td>
<td>100</td>
<td>BPT</td>
<td>24</td>
<td>4.2:1</td>
<td>Ad</td>
<td>110</td>
<td>1999</td>
</tr>
<tr>
<td>M&Y2</td>
<td>CT</td>
<td>80</td>
<td>BPT</td>
<td>18</td>
<td>4.4:1</td>
<td>Ad</td>
<td>110</td>
<td>2000</td>
</tr>
</tbody>
</table>
3rd Generation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoaiba 3</td>
<td>CT + RO</td>
<td>1200</td>
<td>232.5</td>
<td>5.2:1</td>
<td>Add.</td>
<td>110</td>
<td>2009</td>
<td>9.5</td>
</tr>
<tr>
<td>Shuqaiq 2</td>
<td>RO</td>
<td>1020</td>
<td>57</td>
<td>17.9:1</td>
<td>Acid</td>
<td>-</td>
<td>2010</td>
<td>-</td>
</tr>
<tr>
<td>Marafiq</td>
<td>CC + CT</td>
<td>2743</td>
<td>211</td>
<td>13:1</td>
<td>Add.</td>
<td>63</td>
<td>2010</td>
<td>9.5</td>
</tr>
<tr>
<td>Ras Al-Khair</td>
<td>CC + CT</td>
<td>2500</td>
<td>264</td>
<td>9.5:1</td>
<td>Add.</td>
<td>112</td>
<td>2013</td>
<td>9.5</td>
</tr>
</tbody>
</table>
Rabigh IWSPP

Project cost
SR 4,279 million ~ $1,141 million

Power capacity
360 MW
ACWA Net 86MW

Water capacity
134,000 M³/day
ACWA Net 32,026 M³/day

Steam capacity
1,230 t/hr
ACWA Net 294 tons/hr

Contract type
25 year WECA based on BOOT

PCOD
June 2008

ACWA Ownership
23.9%
International Barges Company for Water Desalination Ltd. BOWAREGE

Project cost
SR 370 million ~ USD 100 million

Water capacity
52,000 M³/day
ACWA Net 33,720 M³/d)

PCOD
First quarter 2008

ACWA Ownership
64.85%
Marafiq / Jubail IWPP

Project cost
SR 12,588 million ~ $ 3,360 mil

Power capacity
2,743 MW
ACWA Net 549 MW

Water capacity
800,000 M³/day
ACWA Net 160,000 M³/d

Contract type
20 year PWPA based on BOOT

Scheduled PCOD
March 2010

ACWA Ownership
20%
Cogeneration Power & Water Block

- GT
 - 151 MW
 - HRSG

- GT
 - 151 MW
 - HRSG

- GT
 - 151 MW
 - HRSG

- BPT
- G
 - 256 MW

- 9 MED Evaporators
Cogeneration Power Block

GT

151 MW

HRSG

GT

151 MW

HRSG

GT

151 MW

HRSG

ST

G

T/C
Rabigh IPP

Project cost
SR 9,397 million ~ $ 2,506 million

Power capacity
1,204 MW
ACWA Net 482MW

Contract type
20 year PPA based on BOO

Scheduled PCOD
April 2013

ACWA Ownership
40.0%
Present Desalination Practice in KSA

1. High Power Demand
2. High Water Demand
3. No Preferable Desalination Process
 MSF, MED, RO
 24MGD, 7.5MGD, Unlimited

<table>
<thead>
<tr>
<th></th>
<th>MSF</th>
<th>MED</th>
<th>RO</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR</td>
<td>9.5</td>
<td>9.5</td>
<td>4.6 KWhr/m³</td>
</tr>
<tr>
<td>TBT</td>
<td>112</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Conf.</td>
<td>CT</td>
<td>TVC</td>
<td>Single & Double Pass</td>
</tr>
<tr>
<td>Size</td>
<td>24MGD</td>
<td>7.5 MGD</td>
<td>Unlimited</td>
</tr>
</tbody>
</table>
What is next?
Thermal Desalination Process

1- Implementation of solar energy.
2- Improve the performance ratio PR.
3- Develop high temperature antiscalant.
4- Reduce design fouling factor.
5- Improve the heat transfer coefficient.
Proposed improvement for Membrane Desalination

1- Improve the existing commercially viable membrane flux.
2- Improve salt rejection.
3- Resist organic fouling.
• In 1977 an agreement between US Department of energy and KSA (KACST) was signed for the corporation in the field of solar energy to build freezing desalination plant using solar energy to produce 180 m3/d.

• The plant was built in 1985 and run for two years.
Solar Energy Water Desalination Engineering Test Facility
Solar Panels
Freezing plant consist of:

1-Energy collection system, 18 solar panel with total surface area 1285 m2. The design was based on local solar radiation 8.3 kwhr/m2. With Solar collector efficiency 65-68% steam temperature reached 389 C. Peak solar energy during operation 5400 kwhr/day.

2- Energy storage system.
3- Energy delivery system.

4- Supplementary diesel firing system.

5- Desalination Plant design parameters:
 - Daily production 180 m3/ d.
 - Sea water TDS 45000 ppm
 - Sea water temperature 35 C.
 - Product water TDS < 500 ppm.
Forgotten Desalination Process

• **Freezing**
 • Advantages:
 • 1- Low latent heat, energy consumption is \(\frac{1}{7} \) of the MSF or MED.
 • 2- No corrosion.
 • 3- No antiscalant i.e. no pretreatment.
 • 4- Near atmospheric pressure.
 • 5- Direct heat transfer.
 • 6- High thermodynamic efficiency of refrigerant cycle.
 • 7- Consistent product water quality.
Thank you