Sewage Lake Clean-up and Reuse Studies

Water Arabia 2013 Rob Smith – KSA Country Manager CH2M HILL 6 February 2013

شركة المياه الوطنية National Water Company

Agenda

- Background on Sewage Lakes
- Drivers for the Jeddah
 project
- Jeddah Sewage Lake
 overview
- Sediment management alternatives
- Recommended plan and Site Release Sampling Results

Implications for other sewage lakes

Sewage Lakes

- Sewage Lakes exist throughout Saudi Arabia and the middle east
- Development of wastewater infrastructure has not kept pace with growth
 - Lakes have not been addressed because
 - Public health concerns
 - Many opinions on hazards, often without data
 - Public perception

Agenda

- Background on Sewage
 Lakes
- Drivers for the Jeddah
 project
- Jeddah Sewage Lake
 overview
- Sediment management alternatives
- Recommended plan and Site Release Sampling Results

Implications for other sewage lakes

Sewage Lake Created in Mid 1990s

- Received 1500 to 2000 tanker trucks/day
- Up to 50,000 m³/day of sewage
- Lake grew to 2.8 km² in surface area

25 November 2009 flood highlighted major concerns associated with the Sewage Lake

Sewage lake threatens Jeddah

Last Updated: Dec 4, 2008

Jeddah Disaster: Musk Lake!

Posted on December 1, 2009 by Ibrahim Hudhaif

Musk Lake in Jeddah

001

NEWS/GENERAL NEWS Jeddah sewage lake flood fears spark panic

Jeddah Sewa

clow Dam Ev

Omil

Dec 01, 2009 at 08:08

(9.2010 LeadDog/Consulting 931N 39-20132 731 E elev 10

nagery Dates (Oct 2, 2009 - Feb 19, 2010

Agenda

- Background on Sewage
 Lakes
 - Drivers for the Jeddah
- Jeddah Sewage Lake
 overview
- Sediment management alternatives
- Recommended plan and Site Release Sampling Results

Implications for other sewage lakes

Project Required Rapid Response

• May 2010

- Custodian of the Two Holy Mosques King Abdullah bin Abdulaziz issued a royal decree ordering that the hazardous Sewage Lake be emptied within 1 year
- NWC took responsibility for the project

June 2010

- NWC hires Lake Contractor
- July 2010
 - Water evacuation efforts initiated
 - Planning consultant hired
 - October 2010
 - Lake Evacuation completed

November 2010 to June 2011

Sediment clean-up

Planning to Evaluate Environmental Effects and Alternatives for Jeddah Sewage Lake

Flood Management

Removal of the Sewage Lake Dam

Water Management

- Evacuation of the Lake
- Water Use and Agricultural Activities

Sediment Management

- Characterization
- Treatment/Management alternatives
- Regulatory Requirements
- Mitigation Needs
- Recommended Plan
- Plan Supervision

Flood Management

- Estimated size of 25 Nov 2009 Storm
- Developed HEC-HMS model of watershed to Preventory Dam
- Modeled multiple scenarios related to Sewage Lake Dam
 - Determined that Preventory Dam sufficient to manage similar storm
- Used to consider consequences from removal of dam related to lake remediation

Lake Conditions – August and September

Satellite Image on 29 August 2010

Lake Water Evacuation

Water Movement - While Lake was being Emptied in Jul- Sep

Lake Sediment Assessment – Quality and Volume

Volume

Sediment DTM Volume/mass calculations Characterization

Organic content
 Metals
 Hydrocarbon
 Indicator Organisms

Lake Sediment Volume Update

- Additional sediment depth sampling points
- 125 measurements
 Sediment depths
 - Main Lake ≤0.5 m
 - West Lake <1.2 m Sediment volume
 - Main Lake
 - 300,670 m³
 West Lake
 84,724 m³

• Total Volume = 385,000 m3

Lake Sediment Characteristics

Main Lake Sediment Characteristics

Lake Characterization for Main Lake and Secondary Lake

Main Lake Data

Data indicated meeting KSA criteria for agricultural use of sludge and US EPA "Exceptional Criteria"
 A few sites with elevated petroleum hydrocarbons

Secondary Lake

Showed sediments also met KSA and EPA Criteria
Did show general contamination by petroleum hydrocarbons

Sewage Lake - Ecological Features

Open Water and Wetlands Ecosystem

Planted Forest

Upland Ecosystem

Agenda

- Background on Sewage Lakes
 - Drivers for the Jeddah
 - Jeddah Sewage Lake overview
- Sediment management alternatives
- Recommended plan and Site Release Sampling Results

Implications for other sewage lakes

Lake Sediment Management Alternatives

Sediment Mixing and Removal

- Incorporation by Tillage
- Removal by Excavation
- Removal by Dredging

Sediment Treatment and Processing

- Treatment
- Processing

Sediment Transport and End Use

- Allowing Safe Sediments to Remain in Place
- Agricultural Reuse
- Stockpiling
- Constructed Wetland Development
- Landfill Disposal

Sediment Mixing and Removal

Incorporation by Tillage

- Purpose: Mix organic and mineral soils to produce topsoil
- Currently using chisel plow on D-6 Caterpillar dozer
 Recommend a 2nd pass with a disc harrow for complete mixing only if material to be left in place

 If material is to be hauled off site, do not mix soils – scrape the minimum depth possible

Sediment Mixing and Removal

Removal by Excavation

 Purpose: remove sediments that cannot by left in place

Only remove sediments that cannot be left in place
 Scrapers could be used where soils are firm enough to more carefully control excavation depth – minimize removal of extra mineral soil

Sediment Transport and End Use

- Allow safe sediments to remain in place
- Agricultural reuse
 - Eastern Forest and Wetland Forest
 - Plant nurseries
 - Wadi Al-Asla development landscaping uses
- Temporary stockpiles
 Constructed wetlands
 Landfill disposal

Agenda

- Background on Sewage Lakes
 - Drivers for the Jeddah
 - Jeddah Sewage Lake overview
- Sediment management Sediment management
 - Recommended plan and Site Release Sampling Results
 Implications for other sewage lakes

Sediment Management Recommended Plan

Continued drying of sediments

- Focus on West Lake as thicker material dries
- Use mineral material as a drying agent
- Sample new areas as can be accessed
- Mix thinner sediments in place
 - When sufficiently dry
- Excavate thicker sediments
 - Spread in upper areas of the Main lake with thin deposits
- Mix sediments that have been spread
- Conduct "Site Release Sampling Plan"
 - Verification of site safety

 Excavate sediment material littered with trash from former conveyance channel and dispose at a land fill

On-Site Mixing of Organic Sediments

On-Site Mixing of Organic Sediments

Stratified Sediment Before Mixing

Topsoil Condition After Mixing

Site Release Sampling

6.71

100 M 10

		P													and the second	-			-	-	-	-	1	-
						1						- the	-	he	n	120	(The	009		-	C 10		(- ·
							5			1		~	M.F	ma	Ma	MLID	eten	13 49	ci so		tten	ct eo		
		13				14	1			-		MDATO	min	WEGO	CT1620	m62	VLGS	(1)(2)	101525	(Miles	C167	3 20		
			a	2			-	-	L.	WUSZI	(10,00	mbas	11632	(ML 33)	C165	11 535	WEat	141.27	enesa	MUSS		C3 40	34	
				11	1	12	· ·	in the	CL:CB	MD43	19244	MLHS	MDes	MD+D	CLAS	MEHD	ML-80	HL41	CD42	ML 63	MDH1	82,43		P
			1	-	1	. La		-0	men	WLAT	WEAT	MUES	-MILET	riten	ethers	etes)	NER	(mbat)	11 470	MLG7	CLCD	etken		-
24		/		1	16	WLF7)	(7567)	-	1055	WEIGH	(WU28	MUTO	(W1677	(1157)	ML-79	ML-40	WE41	111.422	80,43	w.co	0.143	C 1433		
	1				eiler	(NL'AD	(MLAD)	11.40	MLIOT	MD,423	wiles:	MLAN	UL-05	MLet	MIL417	MEas	MLAD	ML-100	00400	ME-TO2	ME-103	12500		
		-	-	eke	ML-106	112-107	ME-105	MLIN	11 -110	MESIII	01:02	C 300	C.688	(HL-III)	MLAIN	antero.	ML-111	ML-119	MD-120		M12:022		Y in	E.E
	2	1	ME(12)	(HL:125	WILSON	entertato	(H)(121)	olas)	W14130	etkan	WL(TSS	WLGIDD	C2:04	HL-133	MEAN	WLAD	ML-138	MAD	(VE-140)	MLAND	CULENC	altera		
	143		50 9 9	C[1:030)	ND AR	61 330	015467	NU:143	WERD	11 200		(MD)(1333	C2 400	CILCIEN)	MUITER	MLAB	ML-157		(ULAID)	11 2100	(ML-161			3 15
E	30	10 2 50	6269	C1:423	M2:000	9 11 383	81,167	WLSED	41 500	66.5 70		W 1 :172	12 00	EL5174	Ellette	MILETED	ML-177	MLATO	MB(17D	-		11 400	10:00	
E.	260	5257	6290	ckæ	MD-000	615 683			02:07	C1: CD	81:430	MD-190	C.2400	7			MD-192	MLSIDD	MEADA					- A
W	20	(7740) (7740)	caan	corecton Corecton	WEATER	ME (117	0/14(00)	ML-190	WL 200	(22,200)	ML-202		1.200	1			CTLESH)	ML-208	(CLAZER)		and a state	1	1 th	
62	3400	10200	0340)		n seo	••••	62,510	WL-200	0.533	8360	MLSIN	A	-	1	And I	1	and a	01,633	(ML-SIII)	1	ha			
E	30	යාග	C307	-	MDS07	62400	CLEO	00,000	(02:533)	C	61,920	MD-224	elleza	1	3	1		0.93	A REAL	The second				
62	зÐ	30	102653	0	MIL-227	MLADO	11 523	HL-230	MI4230	61.432	MI-6333	ML-234	006239	0114550	-	1000	1.1		12					

Main Lake (Historic Boundary) West Lake (Historic Boundary) Main Lake Grid West Lake Grid

FIGURE ES-10 Sewage Lake Grid Wastewater Lake, East of Jeddah Jeddah, Saudi Arabia

200

Summary of Results

- Total Organic Carbon low levels indicating sediments are stable
- Metals maximum values <12% of criteria
- Microbiological
 - Fecal Coliform Maximum value of 24 MPN/g versus standard of 1000 MPN/g
 - Parasite eggs None detected
 - Salmonella Detected (Presence/Absence Test) in 32 % of samples based on 25 g of sample versus standard of 3 MPN/4g – NOT CONSIDERED SIGNIFICANT BECAUSE OF OTHER INDICATORS

Petroleum Hydrocarbons

- Only 1 sample exceeded guideline of 2500 mg/kg for TPH
- 3 samples (all > 2000 mg/kg TPH) tested for VOCs and SVOCs
- All results < guidelines after additional mixing</p>

Agenda

- Background on Sewage Lakes
- Drivers for the Jeddah
- Jeddah Sewage Lake overview
- Sediment management
 - Recommended plan and Site Release Sampling

Implications for other sewage lakes

Implications of Lake Cleanup

- Sewage lakes are effective biological treatment systems
 - Data indicates that remaining pollutants in water are primarily nutrients
 - Sediment is well digested in lake bottoms
 - Main pollutant identified in Jeddah and another sewage lake is petroleum hydrocarbons
 - No evidence of significant pathogens wet sediments (Jeddah) or dry sediments (several lakes)

(Jeddah) or dry sediments (several lakes) Water and sediments can be effectively reused

- Water can be used for non-farm restricted irrigation or wetland enhancement
- Sediment can be used as soil conditioners

Current Status of Former Lake Area

Current Status of Former Lake Area

Sewage Lake Clean-up and Reuse Studies

Water Arabia 2013

6 February 2013

شركة المياه الوطنية National Water Company